Logic of Visibility in Social Networks

Rustam Galimullin, Mina Young Pedersen & Marija Slavkovik

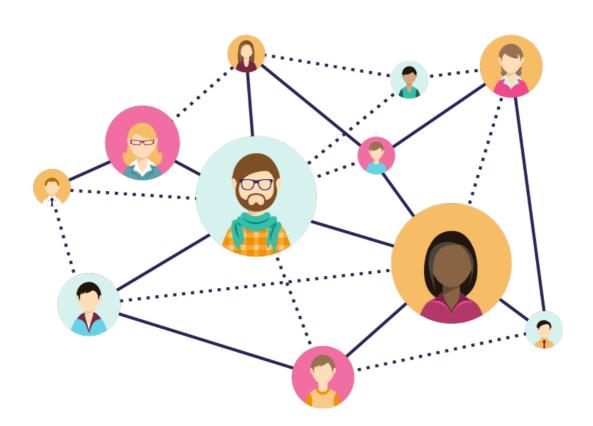
UNIVERSITY OF BERGEN

Outline

- Context and motivation
- Our social network models
- Static visibility logic
- Example: A malicious agent in the system
- Dynamic extension: Visibility logic

Context and Motivation

- Logic for social networks
- Reasoning about visibility and reachability
- Exploiting our network



Context and Motivation

Prove mathematical results about this system

- Outcomes:
 - A new logic to analyze posting and sharing information in a social network
 - Formalize different quantitative and qualitative measures of visibility and reachability
 - Use this logic to understand real-life networks

Our Models

Reflexive p_a -arrow: "a has posted on p"

 $p_a
aggreent a : \{p^+, i\}$ p_a p_a $b : \{j\}$ $c : \{p^-, k\}$

Social network where agents can:

- Post information on a topic
- Share other agents' posts
- Follow and unfollow each other
- Have a pro or a contra opinion about a topic

pa-arrow from a to b:"b has seen a's post on p"

Our Models

• Four rules:

- 1. When an agent posts, all her followers can see the post.
- 2. If an agent sees a post on a topic she **likes**, she will **reshare** the post and **follow** the original poster.
- 3. If an agent sees a post on a topic she dislikes, she does not reshare and unfollows the agent she saw the post from.
- 4. If an agent sees a post on a topic she is indifferent to, she does nothing.

Our Models

Interpretation: Observe a situation after it has happened

$$p_a
call a: \{p^+, i\}
bar$$
 $p_a
bar$
 $p_a
bar$
 $c: \{p^-, k\}$

Static Visibility Logic

$$Nom = \{i, j, k, ...\}$$

Top =
$$\{p, q, r, ...\}$$

Countable set of nominals

Countable set of topics

$$\mathsf{Nom} \cap \mathsf{Top} = \emptyset$$

Syntax

$$\varphi ::= p^+ \mid p^- \mid i \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond_{i:p} \varphi \mid \Diamond_{i:p}^{-1} \varphi \mid \phi \varphi \mid \phi^{-1} \varphi \mid @_i \varphi$$

where $p \in \mathsf{Top} \text{ and } i \in \mathsf{Nom}$.

Static Visibility Logic

Syntax

$$\varphi ::= p^+ \mid p^- \mid i \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond_{i:p} \varphi \mid \Diamond_{i:p}^{-1} \varphi \mid \phi \varphi \mid \phi^{-1} \varphi \mid @_i \varphi$$

where $p \in \mathsf{Top} \text{ and } i \in \mathsf{Nom}$.

- $\Diamond_{i:p}\varphi$ "there is an agent satisfying φ who sees the (re)post of agent i on topic p"

Static Visibility Models

$$M = (A, F, +, -, V, R)$$

A is a non-empty set of agents;

 $F:A\to 2^A$ is an irreflexive followership relation;

 $+: A \to 2^{\mathsf{Top}}$ valuation function for *pro* topics;

 $-: A \to 2^{\mathsf{Top}}$ valuation function for *contra* topics such that $+(a) \cap -(a) = \emptyset$;

 $V: \mathsf{Nom} \to 2^A \text{ valuation such that}$

for all $i \in Nom: |V(i)| = 1;$

Static Visibility Models

$$M = (A, F, +, -, V, R)$$

 $R: \mathsf{Top} \times A \to 2^{A \times A}$ is a visibility relation:

$$p \in \mathsf{Top} \text{ and } a, b, c \in A$$

- 1. If $(a,b) \in R(p,c)$, then $(a,a) \in R(p,c)$.
- 2. If $(a, a) \in R(p, c)$, then $(a, b) \in R(p, c)$ for all b such that $b \in F(a)$.
- 3. If $(a,b) \in R(p,c)$, $p \in +(b)$, and $b \neq c$, then $(b,b) \in R(p,c)$ and $b \in F(c)$.
- 4. If $(a,b) \in R(p,c)$, $p \in -(b)$, and $a \neq b$, then $(b,b) \notin R(p,c)$ and $b \notin F(a)$.
- 5. If $(a,b) \in R(p,c)$, $p \notin +(b)$, $p \notin -(b)$, and $a \neq b$, then $(b,b) \notin R(p,c)$.

Semantics

 M_a pointed visibility model

$$M_{a} \models p^{+} \quad \text{iff} \quad p \in +(a)$$

$$M_{a} \models p^{-} \quad \text{iff} \quad p \in -(a)$$

$$M_{a} \models i \quad \text{iff} \quad a \in V(i)$$

$$M_{a} \models \neg \varphi \quad \text{iff} \quad M_{a} \not\models \varphi$$

$$M_{a} \models \varphi \land \psi \quad \text{iff} \quad M_{a} \models \varphi \text{ and } M_{a} \models \psi$$

$$M_{a} \models \Diamond_{i:p}\varphi \quad \text{iff} \quad \exists b, c \in A : (a, b) \in R(p, c)$$

$$\text{and} \quad V(i) = \{c\} \text{ and } M_{b} \models \varphi$$

$$M_{a} \models \Diamond_{i:p}^{-1}\varphi \quad \text{iff} \quad \exists b, c \in A : (b, a) \in R(p, c)$$

$$\text{and} \quad V(i) = \{c\} \text{ and } M_{b} \models \varphi$$

Semantics

 M_a pointed visibility model

$$M_a \models \Phi \varphi$$
 iff $\exists b \in A : a \in F(b)$ and $M_b \models \varphi$
 $M_a \models \Phi^{-1} \varphi$ iff $\exists b \in A : b \in F(a)$ and $M_b \models \varphi$

$$M_a \models @_i \varphi$$
 iff $M_b \models \varphi$ and $\{b\} = V(i)$

Semantics

$$p_a
call a: \{p^+, i\}
bar$$
 p_a
 $b: \{j\}$
 $c: \{p^-, k\}$
 M

$$M_c \models \Diamond_{i:p}^{-1} \top \wedge \blacksquare \neg p^+$$

Visibility

Quantitative (in finite models):

How many agents that are pro p have seen the agent called i's post on p:

$$|\{a \in A \mid M_a \models p^+ \land \lozenge_{i:p}^{-1} \top\}|$$

Visibility

Qualitative:
$$M_a \models \varphi$$
?

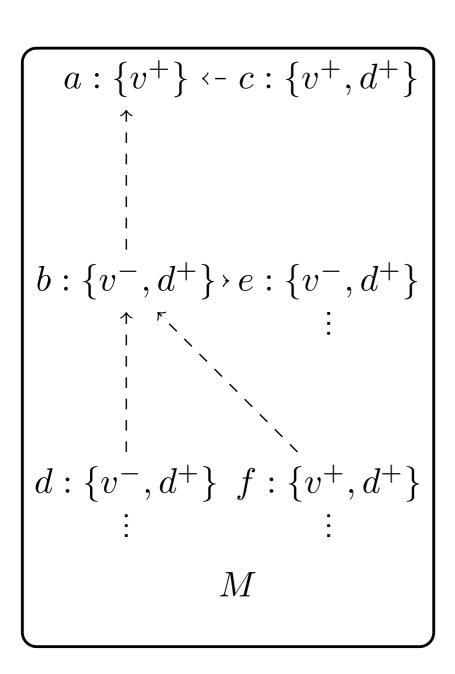
All the followers of the current agent i have shared i's post on p: $i \wedge \blacksquare^{-1} \lozenge_{i:p} \top$

The current agent i shared a post to a follower j, but j also saw the post from another source: $i \wedge \blacklozenge^{-1}(j \wedge \lozenge_{i:p}^{-1}i \wedge \lozenge_{i:p}^{-1}(\neg i \wedge \neg j))$

Soundness, Completeness and Model Checking

- SVL is sound and complete with respect to visibility models
- Model checking SVL is in P

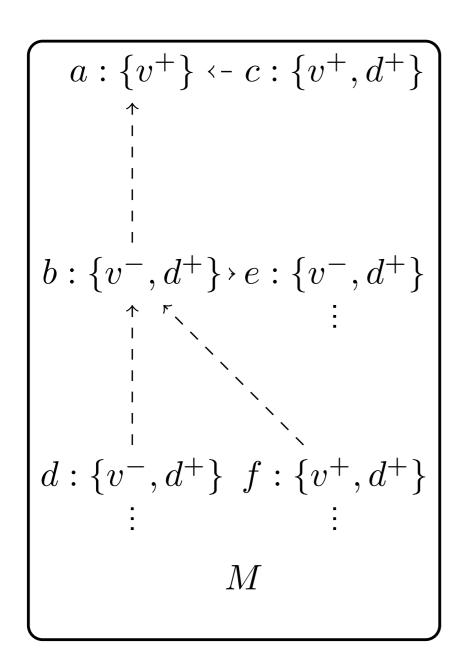
How can an agent exploit these networks?

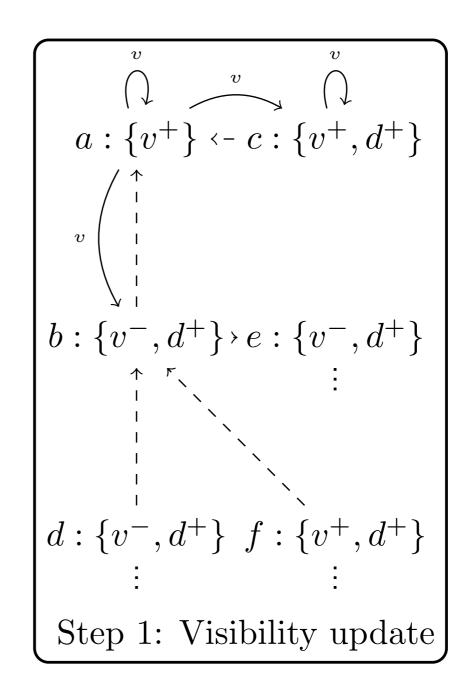


v: vaccination

d: dogs

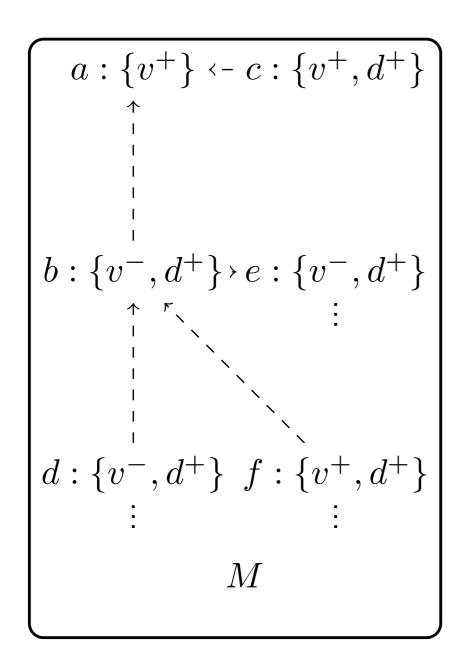
How can an agent exploit these networks?

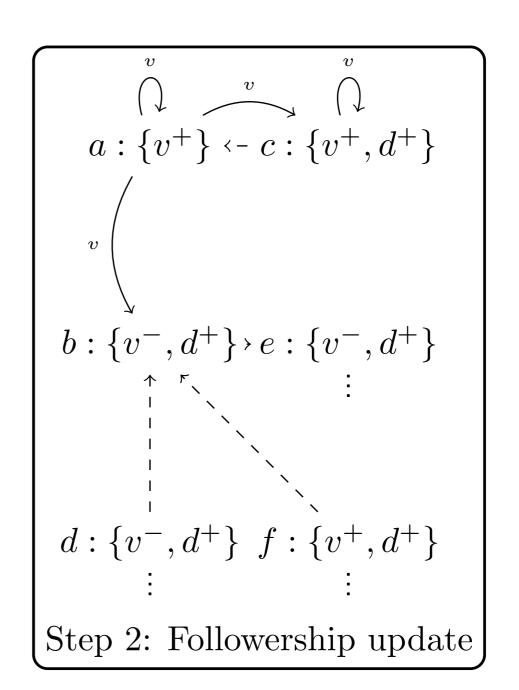




 $M^{a:\iota}$

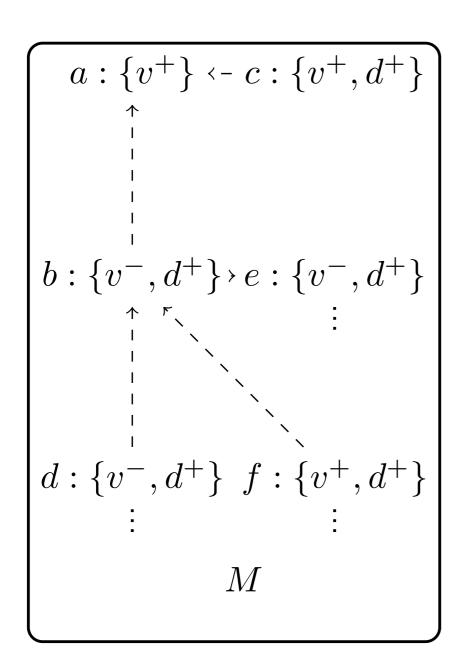
How can an agent exploit these networks?

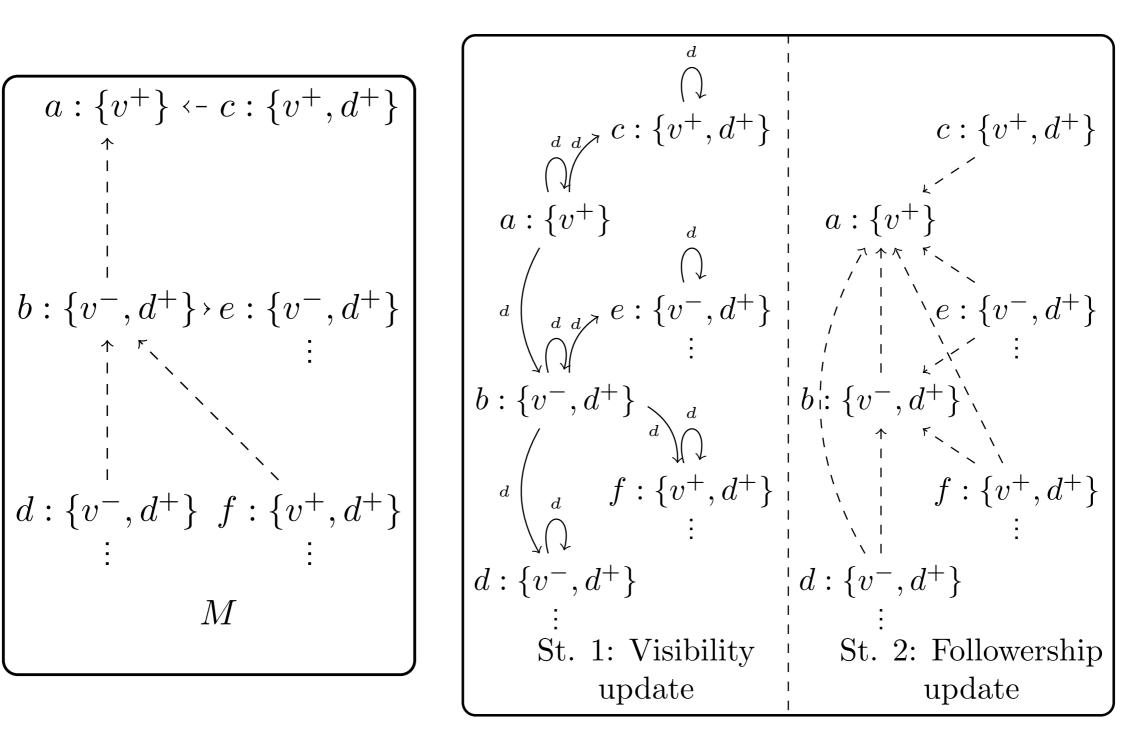




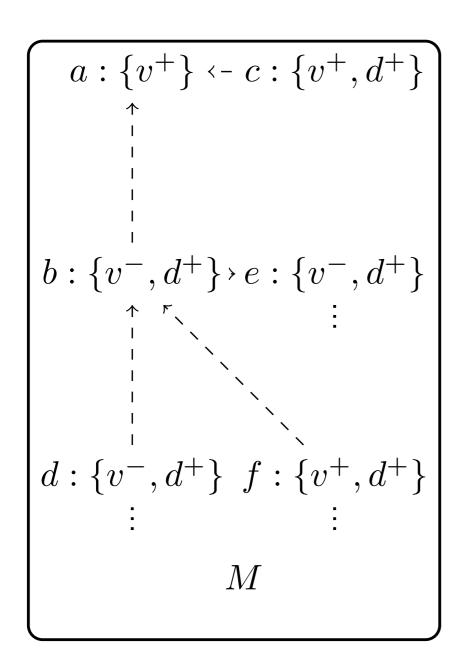
 $M^{a:v}$

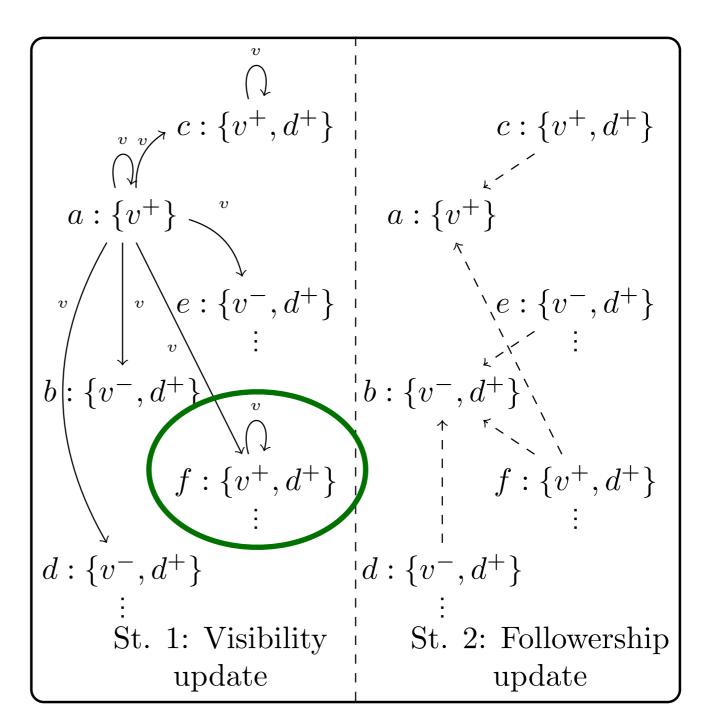
How can an agent exploit these networks?





How can an agent exploit these networks?





 $M^{a:d,a:v}$

How can an agent exploit these networks?

- Posting on dogs before vaccines makes more agents exposed to the post on vaccines
- Order of posting is important
- Agents' interests matter
- Exploit an underlying notion of trust

Dynamic Operator: Visibility Logic

Syntax

$$\mathcal{SVL} + \qquad \begin{array}{ccc} \varphi & ::= & [\pi]\varphi \\ \pi & ::= & p \mid (\pi \cup \pi) \end{array}$$

 $[\pi]\varphi$: "after the current agent executes action π , φ holds"

 $[p \cup q]\varphi$: "whichever topic the current agent posts on, p or q, φ will be true (in both cases)"

Dynamic Operator: Visibility Logic

Semantics

$$M_a \models [p]\varphi$$
 iff $M_a^{a:p} \models \varphi$
 $M_a \models [\pi \cup \tau]\varphi$ iff $M_a \models [\pi]\varphi$ and $M_a \models [\tau]\varphi$

 $M_a^{a:p}$ is defined in two steps:

Visibility update:

$$M* = (A, F, +, -, V, R*)$$

 $R^*(a,p)$ is the least fixed point of $f:2^A\to 2^A$:

$$f(X) = X \cup \{(a, a)\} \cup \{(b, c) \mid (b, b) \in X \text{ and } c \in F(b)\} \cup \{(c, c) \mid p \in +(c) \text{ and } \exists b : (b, c) \in X\}.$$

Dynamic Operator: Visibility Logic

Followership update:

1.
$$F^{a:p}(a) = F(a) \cup \{b\}, \text{ if } a \neq b, p \in +(b),$$

and $\exists c : (c,b) \in R^*(p,a)$

2. $F^{a:p}(b) = F(b) \setminus \{c\}, \text{ if } p \in -(b)$ and $(c, b) \in R^*(p, a)$

Expressivity and Model Checking

- VL is more expressive than SVL
 - No reduction axioms for VL are possible
- The model checking problem for VL is PSPACEcomplete

Future Directions

- Sound and complete axiomatization of VL
- Triggering? Posting pro or contra a topic
- Discriminate between different posts on the same topic

Thank you!