Satisfiability of APAL with Common Knowledge is $\Sigma_1^1\text{-hard}$

Rustam Galimullin

rustam.galimullin@uib.no University of Bergen, Norway Louwe B. Kuijer lbkuijer@liverpool.ac.uk University of Liverpool, UK

Plan of the Talk

Part I. Arbitrary Public Announcement Logic with Common Knowledge (APALC)

Part II. APALC and a Reduction from the Recurring Tiling Problem

Part III. Corollaries and Conclusion

Part I

APAL with Common Knowledge

Epistemic Logic

Agents andLet A and P be countable sets of agentspropositionsand propositional variables

Language of EL $\mathscr{ELC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi$

Epistemic models

An epistemic model M is a tuple (S, \sim, V) , where

- $S \neq \emptyset$ is a set of states;
- $\sim: A \rightarrow 2^{S \times S}$ is an indistinguishability function with each \sim_a being an equivalence relation;
- $V: P \rightarrow 2^S$ is the valuation function.

Semantics of EL

$$\begin{split} M_{s} \vDash p & \text{iff } s \in V(p) \\ M_{s} \vDash \neg \varphi & \text{iff } M_{s} \nvDash \varphi \\ M_{s} \vDash \varphi \land \psi & \text{iff } M_{s} \vDash \varphi \text{ and } M_{s} \vDash \psi \\ M_{s} \vDash \varphi & \text{iff } \forall t \in S : s \sim_{a} t \text{ implies } M_{t} \vDash \varphi \\ M_{s} \vDash Q_{a} \varphi & \text{iff } \exists t \in S : s \sim_{a} t \text{ and } M_{t} \vDash \varphi \end{split}$$

Theorem. EL has a sound and complete axiomatisation

Halpern, Moses. A guide to completeness and complexity for modal logics of knowledge and belief, 1992.

Public Announcement Logic

Language of $\mathscr{PAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi| [\varphi] \varphi$ PAL

Semantics

$$\begin{split} M_{s} &\models [\psi]\varphi \text{ iff } M_{s} &\models \psi \text{ implies } M_{s}^{\psi} &\models \varphi \\ M_{s} &\models \langle \psi \rangle \varphi \text{ iff } M_{s} &\models \psi \text{ and } M_{s}^{\psi} &\models \varphi \end{split}$$

Updated model

Let $M = (S, \sim, V)$ and $\varphi \in \mathscr{PAL}$. An updated model M^{φ} is a tuple $(S^{\varphi}, \sim^{\varphi}, V^{\varphi})$, where • $S^{\varphi} = \{s \in S \mid M_s \models \varphi\};$ • $\sim_a^{\varphi} = \sim_a \cap (S^{\varphi} \times S^{\varphi});$ • $V^{\varphi}(p) = V(p) \cap S^{\varphi}.$

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \phi_a$

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \clubsuit_a$

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \clubsuit_a$

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

$$M_s \models [\neg \clubsuit_a] \square_b (\clubsuit_a \land \spadesuit_b \land \clubsuit_c)$$

$[\psi]\varphi$: after public announcement of ψ , φ is true

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

$[\psi]\varphi$: after public announcement of ψ , φ is true

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of { (), and then Alice says that she does not have clubs

$$M_s \models [\neg \clubsuit_a] \square_b (\clubsuit_a \land \spadesuit_b \land \clubsuit_c)$$

Theorem. PAL has a sound and complete axiomatisation

Theorem. PAL and EL are equally expressive

Axioms of PAL allow one to rewrite any formula of PAL into a formula of EL

 $\langle ! \rangle \varphi$: There is a public announcement, after which φ is true

 $\langle ! \rangle \varphi$: There is a public announcement, after which φ is true

 $[!]\varphi$: After all public announcements, φ is true

 $[!]\varphi$: After all public announcements, φ is true

 $[!]\varphi$: After all public announcements, φ is true

Arbitrary PAL

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p \,|\, \neg \varphi \,|\, (\varphi \land \varphi) \,|\, \Box_a \varphi \,|\, [\varphi] \varphi \,|\, [!] \varphi$

Semantics

$$\begin{split} M_{s} &\models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M_{s} \models [\psi]\varphi \\ M_{s} &\models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M_{s} \models \langle \psi \rangle \varphi \end{split}$$

Some validities

$$\begin{array}{ll} \langle \psi \rangle \varphi \to \langle ! \rangle \varphi & [!] \varphi \to \varphi \\ \langle ! \rangle \varphi \leftrightarrow \langle ! \rangle \langle ! \rangle \varphi & \langle ! \rangle [!] \varphi \leftrightarrow [!] \langle ! \rangle \varphi \end{array}$$

Quantification is restricted to formulas of PAL in order to avoid circularity

Balbiani et al. 'Knowable' as 'Known After an Announcement', 2008.

Axiomatisation of APAL

Axioms of EL and PAL $[!] \varphi \to [\psi] \varphi$ with $\psi \in \mathscr{P}\mathscr{A}\mathscr{L}$ From $\{\eta([\psi]\varphi) | \psi \in \mathscr{PAL}\}$ infer $\eta([!]\varphi)$

Theorem. APAL is more expressive than PAL

Theorem. APAL is sound and complete

Infinitary number of premises

Open Problem. Is there a finitary axiomatisation of APAL?

Balbiani, Van Ditmarsch. A simple proof of the completeness of APAL, 2015.

Alternative Open Problem

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Language of APALC $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi| \blacksquare_G \varphi |[\varphi] \varphi |[!] \varphi$

Semantics

$$\begin{split} M_{s} &\models \blacksquare_{G} \varphi \text{ iff } \forall t \in S : s \sim_{G} t \text{ and } M_{t} \models \varphi \\ M_{s} &\models [!] \varphi \text{ iff } \forall \psi \in \mathscr{PALC} : M_{s} \models [\psi] \varphi \end{split}$$

 $\blacksquare_G \varphi$: It is common knowledge among agents from group G that φ holds

$$\sim_G = (\bigcup_{a \in G} \sim_a)^*$$

Part II

APALC and the Reduction from the Recurring Tiling Problem

Recurring Tiling Problem

Given a finite set of colours C, a tile is a function $\tau : \{ \text{north}, \text{south}, \text{east}, \text{west} \} \rightarrow C$ Given a finite set of tiles T, a tiling problem is the problem to determine whether T can tile the plane

Given a special tile τ^* , a recurring tiling problem is the problem to determine whether *T* can tile the plane such that τ^* appears infinitely often in the first column

Recurring Tiling Problem

Recurring Tiling Problem

Encoding a Tiling

 ψ_{tile} encodes the representation of a single tile adj_tiles requires that adjoining tiles agree on colour *init* forces the existence of a tile at position (0,0) $\psi_{x\&y}$ guarantees that making a move does not lead to different tiles $tile_left$ forces the special tile to appear only in the leftmost column

right & *up* := [!]($\Diamond_{right} \Diamond_{up} \text{centre} \rightarrow \Box_{up} \Box_{right} \text{centre})$

Encoding a Tiling

 ψ_{tile} encodes the representation of a single tile adj_tiles requires that adjoining tiles agree on colour *init* forces the existence of a tile at position (0,0) $\psi_{x\&y}$ guarantees that making a move does not lead to different tiles $tile_left$ forces the special tile to appear only in the leftmost column

$$\Psi_T := \blacksquare_{\{h,v,s\}}(\psi_{tile} \land adj_tiles \land init \land \psi_{x\&y} \land tile_left)$$

Encoding a Tiling

 $\Psi_T := \blacksquare_{\{h,v,s\}}(\psi_{tile} \land adj_tiles \land init \land \psi_{x\&y} \land tile_left)$

Lemma. If *T* can tile $\mathbb{N} \times \mathbb{N}$, then Ψ_T is satisfiable

Lemma. If Ψ_T is satisfiable, then T can tile $\mathbb{N} \times \mathbb{N}$

Encoding the Recurring Tile $\Psi_T \wedge \blacksquare_{\{v,s\}} [\blacksquare_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p**) we no longer have a tiling

Encoding the Recurring Tile $\Psi_T \wedge \blacksquare_{\{v,s\}} [\blacksquare_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p**) we no longer have a tiling

Encoding the Recurring Tile $\Psi_T \wedge \blacksquare_{\{v,s\}} [\blacksquare_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p*^{*}) we no longer have a tiling

Theorem. *T* can tile $\mathbb{N} \times \mathbb{N}$ with τ^* appearing infinitely often in the first column if and only if $\Psi_T \wedge \blacksquare_{\{v,s\}} [\blacksquare_{\{h,s\}} \neg p^*] \neg \Psi_T$ is satisfiable

Theorem. Satisfiability of APALC is Σ_1^1 -hard

Harel. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness, 1986.

Part III

Corollaries and Conclusion

Corollaries

Theorem. Satisfiability of APALC is Σ_1^1 -hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Odifreddi. Classical recursion theory, 1989.

Corollaries

Theorem. Satisfiability of APALC is Σ_1^1 -hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge? **NO!**

Odifreddi. Classical recursion theory, 1989.

Letting Agents Do the Work

Group announcement logic (GAL). $\langle G \rangle \varphi$: There is an announcement by agents from group *G* such that φ is true after the announcement

Coalition announcement logic (CAL). $\langle [G] \rangle \varphi$: There is an announcement by agents from coalition *G* such that no matter what agents outside of the coalition announce at the same time, φ is true

Corollary. GALC and CALC do not have finitary axiomatisations

Ågotnes et al. *Group announcement logic*, 2010. Ågotnes, Van Ditmarsch. *Coalitions and Announcements*, 2008.

Conclusion

Balbiani et al. 'Knowable' as 'Known After an Announcement', 2008.

Ågotnes et al. Group announcement logic, 2010.

Ågotnes, Galimullin. Quantifying over information change with common knowledge, 2023.