Satisfiability of APAL with

 Common Knowledge is Σ_{1}^{1}-hardRustam Galimullin
rustam.galimullin@uib.no
University of Bergen, Norway

Louwe B. Kuijer
lbkuijer@liverpool.ac.uk University of Liverpool, UK

Plan of the Talk

Part I. Arbitrary Public Announcement Logic with Common Knowledge (APALC)

Part II. APALC and a Reduction from the Recurring Tiling Problem

Part III. Corollaries and Conclusion

Part I

APAL with Common Knowledge

Epistemic Logic

Agents and Let A and P be countable sets of agents propositions and propositional variables

Language of EL $\mathscr{E} \mathscr{L} \mathscr{C} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi) \mid \square_{a} \varphi$

Epistemic models

An epistemic model M is a tuple (S, \sim, V), where

- $S \neq \varnothing$ is a set of states;
- $\sim: A \rightarrow 2^{S \times S}$ is an indistinguishability function with each $\sim{ }_{a}$ being an equivalence relation;
- $V: P \rightarrow 2^{S}$ is the valuation function.

Semantics of EL

$$
\begin{gathered}
M_{s} \vDash p \text { iff } s \in V(p) \\
M_{s} \vDash \neg \varphi \text { iff } M_{s} \vDash \varphi \\
M_{s} \vDash \varphi \wedge \psi \text { iff } M_{s} \vDash \varphi \text { and } M_{s} \vDash \psi \\
M_{s} \vDash \square_{a} \varphi \text { iff } \forall t \in S: s \sim_{a} t \text { implies } M_{t} \vDash \varphi \\
M_{s} \vDash \diamond_{a} \varphi \text { iff } \exists t \in S: s \sim_{a} t \text { and } M_{t} \vDash \varphi
\end{gathered}
$$

Theorem. EL has a sound and complete axiomatisation

Public Announcement Logic

Language of PAL

$$
\mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi
$$

Semantics

$$
\begin{gathered}
M_{s} \vDash[\psi] \varphi \text { iff } M_{s} \vDash \psi \text { implies } M_{s}^{\psi} \vDash \varphi \\
M_{s} \vDash\langle\psi\rangle \varphi \text { iff } M_{s} \vDash \psi \text { and } M_{s}^{\psi} \vDash \varphi
\end{gathered}
$$

Updated model Let $M=(S, \sim, V)$ and $\varphi \in \mathscr{P} \mathscr{A} \mathscr{L}$. An updated model M^{φ} is a tuple ($S^{\varphi}, \sim^{\varphi}, V^{\varphi}$), where

- $S^{\varphi}=\left\{s \in S \mid M_{s} \vDash \varphi\right\}$;
- $\sim_{a}^{\varphi}=\sim_{a} \cap\left(S^{\varphi} \times S^{\varphi}\right)$;
- $V^{\varphi}(p)=V(p) \cap S^{\varphi}$.

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\boldsymbol{Q} \mathbf{\&}\}$, and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \boldsymbol{\beta}_{a}$

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\boldsymbol{Q} \mathbf{\&}\}$, and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \boldsymbol{\AA}_{a}$

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\boldsymbol{Q} \mathbf{\&}\}$, and then Alice says that she does not have clubs

Alice says that she does not have clubs: $\neg \boldsymbol{\AA}_{a}$

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\boldsymbol{Q} \mathbf{\&}\}$, and then Alice says that she does not have clubs

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\boldsymbol{\sim} \boldsymbol{\beta}\}$, and then Alice says that she does not have clubs

$$
M_{s} \vDash\left[\neg \boldsymbol{\&}_{a}\right] \square_{b}\left(\boldsymbol{\vartheta}_{a} \wedge \boldsymbol{\varphi}_{b} \wedge \boldsymbol{\phi}_{c}\right)
$$

$[\psi] \varphi$: after public announcement of ψ, φ is true

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\mathbf{Q} \mathbf{\&}\}$, and then Alice says that she does not have clubs

$$
M_{s} \vDash\left[\neg \boldsymbol{\&}_{a}\right] \square_{b}\left(\boldsymbol{\varphi}_{a} \wedge \boldsymbol{\varphi}_{b} \wedge \boldsymbol{\phi}_{c}\right)
$$

$[\psi] \varphi$: after public announcement of ψ, φ is true

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.

Card Example

Three agents, Alice, Bob, and Carol, have each drawn one card from a deck of $\{\mathbf{\$} \mathbf{\$}\}$, and then Alice says that she does not have clubs

$$
M_{s} \vDash\left[\neg \boldsymbol{\&}_{a}\right] \square_{b}\left(\boldsymbol{\otimes}_{a} \wedge \boldsymbol{\varphi}_{b} \wedge \boldsymbol{\&}_{c}\right)
$$

Theorem. PAL has a sound and complete axiomatisation

Theorem. PAL and EL are equally expressive

Axioms of PAL allow one to rewrite any formula of PAL into a formula of EL

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.

Quantifying Over Public Announcements

M

$\langle!\rangle \varphi$: There is a public announcement, after which φ is true

Quantifying Over Public Announcements

M

$$
{ }^{s} \oplus_{\varphi} \quad M^{\psi}
$$

$\langle!\rangle \varphi$: There is a public announcement, after which φ is true

Quantifying Over Public Announcements

M

$$
{ }^{s} \oplus_{\varphi} \quad M^{\psi}
$$

[!] φ : After all public announcements, φ is true

Quantifying Over Public Announcements

M

$$
{ }^{s} \bullet_{\varphi} \quad M^{\chi}
$$

[!] φ : After all public announcements, φ is true

Quantifying Over Public Announcements

[!] φ : After all public announcements, φ is true

Arbitrary PAL

Language of APAL

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M_{s} \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash[\psi] \varphi \\
& M_{s} \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

Some validities

$$
\begin{array}{ll}
\langle\psi\rangle \varphi \rightarrow\langle!\rangle \varphi & {[!] \varphi \rightarrow \varphi} \\
\langle!\rangle \varphi \leftrightarrow\langle!\rangle\langle!\rangle \varphi & \langle!\rangle[!] \varphi \leftrightarrow[!]\langle!\rangle \varphi
\end{array}
$$

Quantification is restricted to formulas of PAL in order to avoid circularity

Balbiani et al. ‘Knowable’ as ‘Known After an Announcement’, 2008.

Axiomatisation of APAL

> Axioms of EL and PAL
> $[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L}$
> From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L}\}$ infer $\eta([!] \varphi)$

Theorem. APAL is more expressive than PAL

Theorem. APAL is sound and complete

Infinitary number of premises

Open Problem. Is there a finitary axiomatisation of APAL?

Alternative Open Problem

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Language of APALC

Semantics

$$
\begin{aligned}
& M_{s} \vDash \square_{G} \varphi \text { iff } \forall t \in S: s \sim_{G} t \text { and } M_{t} \vDash \varphi \\
& M_{s} \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{C} \mathscr{C}: M_{s} \vDash[\psi] \varphi
\end{aligned}
$$

$\boldsymbol{\square}_{G} \varphi$: It is common knowledge among agents from group G that φ holds

$$
\sim_{G}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Part II

APALC and the Reduction from the Recurring Tiling Problem

Recurring Tiling Problem

Given a finite set of colours C, a tile is a function $\tau:\{$ north, south, east, west $\} \rightarrow C$

Given a finite set of tiles T, a tiling problem is the problem to determine whether T can tile the plane

Given a special tile τ^{*}, a recurring tiling problem is the problem to determine whether T can tile the plane such that τ^{*} appears infinitely often in the first column

Recurring Tiling Problem

Can these tiles tile the plane such that \square appears infinitely often in the first column?

Recurring Tiling Problem

Encoding a Tiling

Encoding a Tiling

Encoding a Tiling

Encoding a Tiling

$\psi_{\text {tile }}$ encodes the representation of a single tile
adj_tiles requires that adjoining tiles agree on colour
init forces the existence of a tile at position $(0,0)$
$\psi_{x \& y}$ guarantees that making a move does not lead to different tiles
tile_left forces the special tile to appear only in the leftmost column
right \& up $:=[!]\left(\bigotimes_{r i g h t} \searrow_{u p}\right.$ centre $\rightarrow \square_{u p} \square_{r i g h t}$ centre $)$

Encoding a Tiling

$\psi_{\text {tile }}$ encodes the representation of a single tile
adj_tiles requires that adjoining tiles agree on colour
init forces the existence of a tile at position $(0,0)$
$\psi_{x \& y}$ guarantees that making a move does not lead to different tiles
tile_left forces the special tile to appear only in the leftmost column

$$
\Psi_{T}:=\square_{\{h, v, s\}}\left(\psi_{t i l e} \wedge \text { adj_tiles } \wedge \text { init } \wedge \psi_{x \& y} \wedge \text { tile_left }\right)
$$

Encoding a Tiling

$$
\Psi_{T}:=\square_{\{h, v, s\}}\left(\psi_{\text {tile }} \wedge \text { adj_tiles } \wedge \text { init } \wedge \psi_{x \& y} \wedge \text { tile_left }\right)
$$

Lemma. If T can tile $\mathbb{N} \times \mathbb{N}$, then Ψ_{T} is satisfiable

Lemma. If Ψ_{T} is satisfiable, then T can tile $\mathbb{N} \times \mathbb{N}$

Encoding the Recurring Tile

$$
\Psi_{T} \wedge \square_{\{v, s\}}\left[\square_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Encoding the Recurring Tile

$$
\Psi_{T} \wedge \varpi_{\{v, s\}}\left[\boldsymbol{\square}_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Encoding the Recurring Tile

$$
\Psi_{T} \wedge \varpi_{\{v, s\}}\left[\varpi_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Theorem. T can tile $\mathbb{N} \times \mathbb{N}$ with τ^{*} appearing infinitely often in the first column if and only if

$$
\Psi_{T} \wedge \square_{\{v, s\}}\left[\square_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T} \text { is satisfiable }
$$

Theorem. Satisfiability of APALC is Σ_{1}^{1}-hard

Part III

Corollaries and Conclusion

Corollaries

Theorem. Satisfiability of APALC is Σ_{1}^{1}-hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Corollaries

Theorem. Satisfiability of APALC is Σ_{1}^{1}-hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge? NO!

Letting Agents Do the Work

Group announcement logic (GAL). $\langle G\rangle \varphi$: There
is an announcement by agents from group G such that φ is true after the announcement

> Coalition announcement logic (CAL). $\langle[G]\rangle \varphi$:
> There is an announcement by agents from coalition G such that no matter what agents outside of the coalition announce at the same time, φ is true

Corollary. GALC and CALC do not have finitary axiomatisations

Conclusion

Balbiani et al. 'Knowable’ as 'Known After an Announcement', 2008.
Ågotnes et al. Group announcement logic, 2010.
Ågotnes, Galimullin. Quantifying over information change with common knowledge, 2023.

