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Dynamic epistemic logics which model abilities of agents to make various announcements and influ-
ence each other’s knowledge have been studied extensively in recent years. Two notable examples
of such logics are Group Announcement Logic and Coalition Announcement Logic. They allow us
to reason about what groups of agents can achieve through joint announcements in non-competitive
and competitive environments. In this paper, we consider a combination of these logics – Coalition
and Group Announcement Logic and provide its complete axiomatisation. Moreover, we partially
answer the question of how group and coalition announcement operators interact, and settle some
other open problems.

1 Introduction

To introduce the logics we will be working with in this paper, we start with an example loosely based
on the one from [16]. Let us imagine that Ann, Bob, and Cath are travelling by train from Nottingham
to Liverpool through Manchester. Cath was sound asleep all the way, and she has just woken up. She
does not know whether the train passed Manchester, but Ann and Bob know that it has not. Now, if
the train driver announces that the train is approaching Manchester, then Cath, as well as Ann and Bob,
knows that they have not passed the city yet. To reason about changes in agents’ knowledge after public
announcements, we can use Public Announcement Logic (PAL) [15]. Returning to the example, let us
assume that the train driver does not announce anything, so that Cath is not aware of her whereabouts.
Ann and Bob may tell her whether they passed Manchester. In other words, Ann and Bob have an
announcement that can influence Cath’s knowledge. An extension of PAL, Group Announcement Logic
(GAL) [2], deals with the existence of announcements by groups of agents that can achieve certain
results. Now, let us assume that Ann does not want to disclose to Cath their whereabouts and Bob does,
i.e. Ann and Bob have different goals. Then, it is clear that no matter what Ann says, the coalition of
Bob and Cath can achieve the goal of Cath knowing that the train has not passed Manchester, that is,
Bob can communicate this information to Cath. On the other hand, if Ann and Bob work together, then
they have an announcement (for example, a tautology ‘It either rains in Liverpool or it doesn’t’), such
that whatever Cath says, she remains unaware of her whereabouts. For this type of strategic behaviour,
another extension of PAL – Coalition Announcement Logic (CAL) – has been introduced in [3].

CAL joins two logical traditions: Dynamic Epistemic Logic, of which PAL is a representative, and
Coalition Logic (CL) [14]. The latter allows us to reason about whether a coalition of agents has a
strategy to achieve some goal, no matter what the agents outside of the coalition do. CL essentially
talks about concurrent games, and the actions that the agents execute are arbitrary actions (strategies in
one-shot games). So, from this perspective, CAL is a coalition logic with available actions restricted to
public announcements.

To the best of our knowledge, there is no complete axiomatisation of CAL [3, 11, 4, 5] or any
other logic with coalition announcement operators. In this paper, we consider Coalition and Group
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Announcement Logic (CoGAL), a combination of GAL and CAL, which includes operators for both
group and coalition announcements. The main result of this paper is a sound and complete axiomatisation
of CoGAL. As part of this result, we study the interplay between group and coalition announcement
operators, and partially settle the question on their interaction that was stated as an open problem in
[11, 5].

2 Coalition and Group Announcement Logic

2.1 Syntax and Semantics

Throughout the paper, let a finite set of agents A, and a countable set of propositional variables P be
given. The language of the logic is comprised of the language of classical propositional logic with added
operators for agents’ knowledge Kaϕ (reads ‘agent a knows ϕ’), and public announcement [ψ]ϕ (reads
‘after public announcement that ψ , ϕ holds), group [G]ϕ (‘after any public announcement by group of
agents G, ϕ holds), and coalition announcements [〈G〉]ϕ (‘for every public announcement by coalition
of agents G there is an announcement by other agents A \G, such that ϕ holds after joint simultaneous
announcement’).

Definition 2.1. (Language) The language of coalition and group announcement logic LCoGAL is as
follows:

ϕ,ψ ::= p | ¬ϕ | (ϕ ∧ψ) | Kaϕ | [ϕ]ψ | [G]ϕ | [〈G〉]ϕ ,

where p ∈ P, a ∈ A, G⊆ A, and all the usual abbreviations of propositional logic (such as ∨,→,↔) and
conventions for deleting parentheses hold. The dual operators are defined as follows: K̂aϕ ↔ ¬Ka¬ϕ ,
〈ϕ〉ψ ↔¬[ϕ]¬ψ , 〈G〉ϕ ↔¬[G]¬ϕ , and 〈[G]〉ϕ ↔¬[〈G〉]¬ϕ . Observe that 〈G〉ϕ means that G has an
announcement after which ϕ holds, and 〈[G]〉ϕ means that G has an announcement such that after it is
made simultaneously with any announcement by A\G, ϕ holds. The latter corresponds to the Coalition
Logic operator, but for announcements instead of arbitrary actions.

We define LGAL as the language without the operator [〈G〉], LPAL the language without [G] as well,
and LEL the purely epistemic language which in addition does not contain announcement operators [ϕ].

Next definition is needed for technical reasons in the formulation of infinite rules of inference in
Definition 2.5. We want the rules to work for a class of different types of premises. Ultimately, we
require premises to be expressions of depth n of the type ϕ1→ �1(ϕ2→ . . .(ϕn→ �n]) . . .), where �i

is either Ka or [ψ] for some a ∈ A and ψ ∈LCoGAL, atom ] denotes a placement of a formula to which
a derivation is applied, and some ϕ’s and �’s can be omitted. This condition is captured succinctly by
necessity forms originally introduced by Goldblatt in [13].

Definition 2.2. (Necessity forms) Let ϕ ∈LCoGAL, then necessity forms [13] are inductively defined as
follows:

η ::= ] | ϕ → η(]) | Kaη(]) | [ϕ]η(]).

The atom ] has a unique occurrence in each necessity form. The result of the replacement of ] with ϕ in
some η(]) is denoted as η(ϕ).

Whereas formulas of coalition logic [14] are interpreted in game structures, formulas of CoGAL are
interpreted in epistemic models. Let us consider an example of such a model first. In Figure 1 there are
three agents: a (Ann), b (Bob), and c (Cath). Let p denote the proposition that ‘The train has passed
Manchester.’ There are two states in the model M: a state w where ¬p is true, and a state v where p is
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Figure 1: Train example

true; and only one state in model M¬p which denotes M updated by the announcement ¬p (the process
of updating the model is described below). Let the w be the actual state. Edges connect states that an
agent cannot distinguish. In the actual state w of M, Cath (agent c) does not know whether p is true.
Ann and Bob, on the contrary, know that p is false. Now suppose that Bob announces that ¬p. This
truthful public announcement ‘deletes’ all the states where p is true, and the corresponding epistemic
indistinguishability relations; in this example, v is ‘deleted,’ and the resulting model is M¬p. After
this announcement Cath knows ¬p, or, formally, [¬p]Kc¬p. In this paper, within group and coalition
announcements, we only quantify over announcements of formulas of the type Kaϕ . If a group consists
only of Cath, who does not know ¬p and hence cannot announce Kc¬p, the following holds in state
w of M: [c](¬Kc¬p∧¬Kc p), i.e. whatever c announces, she still does not know whether p after the
announcement 1. Also, Ann and Bob can remain silent (or announce a tautology >) and preclude Cath
from knowing that ¬p. In other words, there is announcement by their group such that after it is made,
agent c does not know the value of p: 〈{a,b}〉(¬Kc¬p∧¬Kc p). Moreover, this holds whatever Cath
announces at the same time: 〈[{a,b}]〉(¬Kc¬p∧¬Kc p). On the other hand, a coalition consisting of Ann
and Cath does not have such a power, since Bob can always announce that ¬p: ¬〈[{a,c}]〉(¬Kc¬p∧
¬Kc p), or, equally, [〈{a,c}〉](Kc¬p∨Kc p).

Now, we provide formal definitions.
Definition 2.3. (Epistemic model) An epistemic model is a triple M = (W,∼,V ), where
• W is a non-empty set of states;

• ∼: A→P(W×W ) assigns an equivalence relation to each agent; we will denote relation assigned
to agent a ∈ A by ∼a;

• V : P→P(W ) assigns a set of states to each propositional variable.
A pair (W,∼) is called an epistemic frame, and a pair (M,w) with w ∈W is called a pointed model.
An announcement in a pointed model (M,w) results in an updated pointed model (Mϕ ,w). Here Mϕ =
(W ϕ ,∼ϕ ,V ϕ), and W ϕ = JϕKM,∼ϕ

a =∼a ∩ (JϕKM×JϕKM), and V ϕ(p) =V (p)∩JϕKM. Generally speak-
ing, an updated pointed model (Mϕ ,w) is a restriction of the original one to the states where ϕ holds.

Let L G
EL denote the set of formulas of the type

∧
i∈G Kiϕi, where for every i∈G it holds that ϕi ∈LEL.

These are the formulas we will be quantifying over in modalities of the form [G] and [〈G〉].
Definition 2.4. (Semantics) Let a pointed model (M,w) with M = (W , ∼,V ), a ∈ A, and ϕ , ψ ∈LCoGAL

be given.
(M,w) |= p iff w ∈V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ

(M,w) |= ϕ ∧ψ iff (M,w) |= ϕ and (M,w) |= ψ

(M,w) |= Kaϕ iff ∀v ∈W : w∼a v implies (M,v) |= ϕ

(M,w) |= [ϕ]ψ iff (M,w) |= ϕ implies (Mϕ ,w) |= ψ

(M,w) |= [G]ϕ iff ∀ψ∈L G
EL : (M,w) |= [ψ]ϕ

(M,w) |= [〈G〉]ϕ iff ∀ψ∈L G
EL ∃χ∈L A\G

EL : (M,w) |= ψ → 〈ψ ∧χ〉ϕ
1For readability, we use [c] rather than [{c}] for singleton coalitions.
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Formula ϕ is called valid if for any pointed model (M,w) it holds that (M,w) |= ϕ .
The semantics for the ‘diamond’ versions of knowledge, public and group announcement operators

(K̂aϕ , 〈ϕ〉ψ , and 〈G〉ϕ respectively) are obtained by changing ∀ to ∃ and ‘implies’ to ‘and’ in the
corresponding lines. The semantics for a dual of the coalition announcement operator is as follows:

(M,w) |= 〈[G]〉ϕ iff ∃ψ∈L G
EL ∀χ∈L A\G

EL : (M,w) |= ψ ∧ [ψ ∧χ]ϕ,

which corresponds to ‘there is an announcement by agents from G, such that whatever other agents A\G
announce at the same time, ϕ holds.’

Note that following [8, 7, 2, 3, 5, 9, 11, 4] we restrict formulas which agents in a group or coalition
can announce to formulas of LEL. This allows us to avoid circularity in the definition.

2.2 Axiomatisation and Some Logical Properties

In this section we present an axiomatisation of CoGAL and show its soundness.

Definition 2.5. Axiomatisation of CoGAL is a union of axiomatisation of GAL [2], interaction axiom
for group and coalition announcements A11, rule of inference for coalition announcements R6, and
necessitation R4.

(A0) instantiations of propositional tautologies,
(A1) Ka(ϕ → ψ)→ (Kaϕ → Kaψ),
(A2) Kaϕ → ϕ,
(A3) Kaϕ → KaKaϕ,
(A4) ¬Kaϕ → Ka¬Kaϕ,
(A5) [ϕ]p↔ (ϕ → p),
(A6) [ϕ]¬ψ ↔ (ϕ →¬[ϕ]ψ),
(A7) [ϕ](ψ ∧χ)↔ ([ϕ]ψ ∧ [ϕ]χ),
(A8) [ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ),
(A9) [ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ,

(A10) [G]ϕ → [ψ]ϕ, where ψ ∈L G
EL,

(A11) 〈[G]〉ϕ → 〈G〉[A\G]ϕ,
(R0) ` ϕ,ϕ → ψ ⇒` ψ,
(R1) ` ϕ ⇒` Kaϕ,
(R2) ` ϕ ⇒` [ψ]ϕ,
(R3) ` ϕ ⇒` [G]ϕ,
(R4) ` ϕ ⇒` [〈G〉]ϕ,
(R5) (∀ψ∈L G

EL ` η([ψ]ϕ))⇒` η([G]ϕ),

(R6) (∀ψ∈L G
EL ∃χ∈L A\G

EL
` η(ψ → 〈ψ ∧χ〉ϕ))⇒` η([〈G〉]ϕ).

So, CoGAL is the smallest subset of LCoGAL that contains all the axioms A0 – A11 and closed under
rules of inference R0 – R6. Elements of CoGAL are called theorems. Note that R5 and R6 are infinitary
rules: they require an infinite number of premises. Finding finite axiomatisations of any of APAL, GAL,
or CAL is an open problem. Note also that CoGAL includes coalition logic [14], that is all the axioms
of the latter are validities of CoGAL and a rule of inference preserves validity (see Appendix A).

Definition 2.6. (Soundness and completeness) An axiomatisation is sound, if for any formula ϕ of the
language, it holds that ϕ ∈ CoGAL implies ϕ is valid. And vice versa for completeness.

Soundness of A0–A4, R0, and R1 is due to soundness of S5. Axioms A5–A9 and rule of inference
R3 are sound, since PAL is sound [12]. Soundness of axiom A10 and rules of inference R3 and R5 was
shown in [2]. We show soundness of R4, R6 in Proposition 2.7, and validity of A11 in Proposition 2.10.

Proposition 2.7. R4 and R6 are sound, that is, they preserve validity.

Proof. A proof is given in Appendix B (Proposition B.1).

Validity of A11 was stated to be an open question in [11, 5]. Informally, the idea of our proof is
as follows. Let us examine the axiom: 〈[G]〉ϕ → 〈G〉[A \G]ϕ . In the antecedent, all the agents make
announcements simultaneously. In the consequent, the agents in A\G know the announcement ψ made
by the agents in G. In the updated model (Mψ ,w) the agents in A \G may learn some new epistemic
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formulae χ which they did not know before the announcement. We need to make sure that these new
formulae cannot allow them to make ϕ false. However, since ψ is true in the initial model, and χ

in the updated one, agents in A \G can always make an announcement that they know that after the
announcement of ψ , χ holds. This announcement, made simultaneously with the announcement by G,
‘models’ the effect of announcing χ later. Returning to our example (Figure 1), whichever formulae
ψ1 and ψ2 Ann and Bob announce, and whichever formula ϕ Cath learns afterwards, she can always
announce [ψ1 ∧ψ2]Kcϕ simultaneously with them in the initial situation. Informally, if after Bob’s
announcement of ¬p, Cath learns that ¬p, she can announce: ‘If you say that ¬p holds, then I will
know it,’ or [¬p]Kc¬p. We use this idea to prove that if the agents in A \G can prevent ϕ after the
announcement by G, then they could have prevented it before.

Due to restriction of announcements to formulas of epistemic logic, we cannot directly employ public
announcement operators in agents’ ‘utterances.’ In order to avoid this, we use the standard translation of
PAL into epistemic logic.

Definition 2.8. Translation function t : LPAL→LEL [12] is defined as follows:

t(p) = p,
t(¬ϕ) = ¬t(ϕ),
t(ϕ ∧ψ) = t(ϕ)∧ t(ψ),
t(Kaϕ) = Kat(ϕ),
t([ϕ]p) = t(ϕ → p),

t([ϕ]¬ψ) = t(ϕ →¬[ϕ]ψ),
t([ϕ](ψ ∧χ)) = t([ϕ]ψ ∧ [ϕ]χ),
t([ϕ]Kaψ) = t(ϕ → Ka[ϕ]ψ),
t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ).

Every ϕ ∈LPAL is equivalent to t(ϕ) ∈LEL.

Now we show that for every announcement of agents’ knowledge in some updated pointed model
(Mψ ,w) there is an equivalent announcement in the original one (i.e. in (M,w)).

Lemma 2.9. Let a, . . . ,b ∈ A. The following formula is valid for all ψ , χa, . . . , χb ∈LEL:

[ψ ∧Kat([ψ]χa)∧ . . .∧Kbt([ψ]χb)]ϕ ↔ [ψ][Kaχa∧ . . .∧Kbχb]ϕ

Proof. Suppose that for some pointed model (M,w) it holds that (M,w) |= [ψ ∧ Kat([ψ]χa) ∧ . . . ∧
Kbt([ψ]χb)]ϕ . By propositional reasoning, it is equivalent to (M,w) |= [ψ ∧ (ψ → Kat([ψ]χa))∧ . . .∧
(ψ → Kbt([ψ]χb))]ϕ , and, by equivalence of a formula and its translation, the latter is equivalent to
(M,w) |= [ψ ∧ (ψ → Ka[ψ]χa)∧ . . .∧ (ψ → Kb[ψ]χb)]ϕ . By A8, we have that (M,w) |= [ψ ∧ [ψ]Kaχa∧
. . .∧ [ψ]Kbχb]ϕ , and, by A7, (M,w) |= [ψ ∧ [ψ](Kaχa∧ . . .∧Kbχb)]ϕ . Finally, by A9, the latter is equiv-
alent to (M,w) |= [ψ][Kaχa∧ . . .∧Kbχb]ϕ .

We use Lemma 2.9 to show validity of axiom A11.

Proposition 2.10. 〈[G]〉ϕ → 〈G〉[A\G]ϕ is valid.

Proof. Suppose to the contrary that for some pointed model (M,w) it holds that (M,w) |= 〈[G]〉ϕ and
(M,w) 6|= 〈G〉[A\G]ϕ . From (M,w) |= 〈[G]〉ϕ , by the semantics,

∃ψ∈L G
EL ∀χa, . . .χb∈LEL : (M,w) |= ψ ∧ [ψ ∧Kaχa∧ . . .∧Kbχb]ϕ.

Let us call ψG the formula that G can announce to enforce ϕ . From (M,w) 6|= 〈G〉[A\G]ϕ ,

∀ψ ′∈L G
EL ∃χ

′
a, . . . ,χ

′
b∈LEL : (M,w) 6|= 〈ψ ′〉[Kaχ

′
a∧ . . .∧Kbχ

′
b]ϕ.
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In particular, for ψ ′ = ψG,

∃χ
′
a, . . . ,χ

′
b∈LEL : (M,w) 6|= 〈ψG〉[Kaχ

′
a∧ . . .∧Kbχ

′
b]ϕ.

Since ψG is true in (M,w), this is equivalent to

∃χ
′
a, . . . ,χ

′
b∈LEL : (M,w) 6|= [ψG][Kaχ

′
a∧ . . .∧Kbχ

′
b]ϕ.

By Lemma 2.9, the latter is equivalent to

∃χ
′
a, . . . ,χ

′
b ∈LEL : (M,w) 6|= [ψG∧Kat([ψG]χ

′
a)∧ . . .∧Kbt([ψG]χ

′
b)]ϕ.

Since t([ψG]χ
′
a), . . . , t([ψG]χ

′
b) are in LEL, we have the contradiction with

∀χa, . . .χb∈LEL : (M,w) |= ψG∧ [ψG∧Kaχa∧ . . .∧Kbχb]ϕ.

Proposition 2.10 allows us to prove Lindenbaum Lemma (Proposition 2.19) for CoGAL. But before
that, let us show some properties of the logic. The following validity shows that if some formula ϕ can
be achieved by two coalition announcements, it can be achieved by a single joint coalition announcement
as well. The validity was known only for the case of group announcements in GAL [2]. We show that
this also holds for coalition announcements.

Proposition 2.11. 〈[G]〉〈[H]〉ϕ → 〈[G∪H]〉ϕ is valid.

Proof. The proof is presented in Appendix B (Proposition B.2).

Corollary 2.12. 〈[G]〉〈[G]〉ϕ → 〈[G]〉ϕ is valid.

The other direction of Proposition 2.11 does not hold. Whether 〈[G∪H]〉ϕ → 〈[G]〉〈[H]〉ϕ is valid
was posed as an open question in [5]. We settle this question by presenting a counterexample.

Proposition 2.13. 〈[G∪H]〉ϕ → 〈[G]〉〈[H]〉ϕ is not valid.

Proof. Let G = {a},H = {b}, and ϕ := Kb(p∧ q∧ r)∧¬Ka(p∧ q∧ r)∧¬Kc(p∧ q∧ r). Informally, ϕ

says that agent b knows that the given propositional variables are true, and agents a and c do not. Consider
the model M in Figure 2 (reflexive arrows are omitted for convenience). By the semantics, (M,�) |=
〈[{a,b}]〉ϕ iff ∃(Kaψ ∧Kbχ), ψ,χ ∈LEL, ∀Kcτ , τ ∈LEL : (M,�) |= Kaψ ∧Kbχ ∧ [Kaψ ∧Kbχ ∧Kcτ]ϕ .
Let ψ be q, and χ be >. Observe that (M,�) |= Kaq∧Kb>. Moreover, c does not know any formula
that she can announce to avoid ϕ . An informal argument is as follows. Whatever c announces in this
situation, she cannot avoid b learning p∧q∧ r. In order to make a learn that p∧q∧ r, c has to announce
something of the form ψ→ p, since she does not know the value of p herself. Formula ψ can be neither
r nor q, because c does not know their truth values. Also, it cannot be a statement of b’s knowledge,
since in every q-world accessible by c, b’s knowledge is only a reflexive arrow. It cannot be a’s or c’s
knowledge either, since in this case a would have known p herself, and c’s relation between q-states is
universal.

In the consequent, we have (M,�) |= 〈[a]〉〈[b]〉ϕ . By the semantics, ∃ψ∈L a
EL ∀χ∈L b∪c

EL : (M,�) |=
ψ∧ [ψ∧χ]〈[b]〉ϕ . Let us fix such a ψ , and let χ :=Kb p∧Kc>. Then (M,�) |=ψ∧ [ψ∧Kb p∧Kc>]〈[b]〉ϕ .
Observe that no matter what a announces, Kb p ‘forces’ a to learn that p∧q∧r, and whatever is announced
in the updated model (Mψ∧Kb p∧Kc>,�), a’s knowledge of p∧q∧ r and, hence, falsity of ϕ remains. So,
(M,�) 6|= 〈[a]〉〈[b]〉ϕ .
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Figure 2: A counterexample

2.3 Completeness

In order to prove completeness of CoGAL, we expand and modify the completeness proof for APAL
[7, 9, 6]. Although the proof is partially based upon the classic canonical model approach, we have to
ensure that construction of maximal consistent theories (Proposition 2.19) allows us to include infinite
amount of formulas for cases of coalition announcements. This corresponds to ‘whatever other agents
may say.’ But before we start, let us state two auxiliary lemmas.

Lemma 2.14. Let ϕ,ψ ∈LCoGAL. If ϕ → ψ is a theorem, then η(ϕ)→ η(ψ) is a theorem as well.

Proof. A simple induction on the complexity of η .

Lemma 2.15. [χ]〈ψ〉ϕ → [χ]〈G〉ϕ , where χ ∈LCoGAL, and ψ ∈L G
EL, is a theorem.

Proof. Let ψ ∈L G
EL. By A10, [G]¬ϕ → [ψ]¬ϕ is a theorem. By contraposition, we have that 〈ψ〉ϕ →

〈G〉ϕ is also a theorem. By R2 and distribution over implication, we infer [χ]〈ψ〉ϕ → [χ]〈G〉ϕ .

Now, the first part of the proof up to Proposition 2.19 is based on [7].

Definition 2.16. A set of formulae x is called a theory if and only if it contains CoGAL, and is closed
under R0,R5, and R6. A theory x is consistent if and only if ⊥ 6∈ x, and is maximal if and only if for all
ϕ ∈LCoGAL it holds that either ϕ ∈ x or ¬ϕ ∈ x.

Proposition 2.17. Let x be a theory, ϕ,ψ ∈LCoGAL, and a ∈ A. The following are theories: x+ϕ =
{ψ : ϕ → ψ ∈ x},Kax = {ϕ : Kaϕ ∈ x}, and [ϕ]x = {ψ : [ϕ]ψ ∈ x}.

Proof. The proof is an extension of the one from [7] (see Appendix B, Propostion B.3).

Proposition 2.18. Let ϕ ∈LCoGAL. Then, CoGAL+ϕ is consistent iff ¬ϕ 6∈ CoGAL.

Proof. The proof is given in Appendix B (Proposition B.4).

The following proposition is a variation of Lindenbaum Lemma. Validity of axiom A11 allows us to
expand the corresponding proof for APAL, and to deal with having two different quantifiers at the same
time.

Proposition 2.19. Every consistent theory x can be extended to a maximal consistent theory y.

Proof. Let ψ0,ψ1, . . . be an enumeration of formulae of the language, and let y0 = x. Suppose that for
some n≥ 0, yn is a consistent theory, and x⊆ yn. If yn+ψn is consistent, then yn+1 = yn+ψn. Otherwise,
if ψn is not a conclusion of either R5 or R6, yn+1 = y. If ψn is a conclusion of R5, we enumerate all the
subformulae of ψn which contain group announcement modalities [G]. Let η1([G]ϕ1), . . . ,ηk([G]ϕk) be
all these subformulae. Then y0

n, . . . ,y
k
n is a sequence of consistent theories, where y0

n = yn, and for some
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i < k, yi
n is a consistent theory containing yn and ¬ηi([G]ϕi). Since yi

n is closed under R5, there exists
χ ∈L G

EL such that ηi([χ]ϕi) 6∈ yi
n. Hence, yi+1

n = yi
n +¬ηi([χ]ϕi), and yn+1 = yk

n.
Now, we consider the case when ψn is a conclusion of R6. We enumerate all the subformulae of

ψn which contain coalition announcement modalities [〈G〉]. Let η1([〈G〉]ϕ1), . . ., ηk([〈G〉]ϕk) be all these
subformulae. Then y0

n, . . . ,y
k
n is a sequence of consistent theories, where y0

n = yn, and for some i < k, yi
n

is a consistent theory containing yn and ¬ηi([〈G〉]ϕi). By A11, this means that ¬ηi([G]〈A \G〉ϕi) ∈ yi
n.

Since yi
n is closed under R5, there exists χ ∈ L G

EL such that ηi([χ]〈A \G〉ϕi) 6∈ yi
n. Hence, yi+1

n =

yi
n +¬ηi([χ]〈A\G〉ϕi), and yn+1 = yk

n. Note that since for all τ ∈L
A\G

EL η([χ]〈τ〉ϕ)→ η([χ]〈A\G〉ϕ)
are theorems (by Lemmas 2.14 and 2.15), they and their contrapositions are already in yi

n (since yi
n is a

theory). Thus, adding ¬ηi([χ]〈A\G〉ϕi) to yi
n adds all the ¬ηi([χ]〈τ〉ϕi) for τ ∈L

A\G
EL as well.

Finally, y is a maximal consistent theory, and x⊆ y.

The rest of the proof is an expansion of the one from [9]. It employs induction on complexity of
formulae to prove Truth Lemma (Proposition 2.25) and, ultimately, completeness (Proposition 2.26) of
CoGAL.

Definition 2.20. The size of some formula ϕ ∈LCoGAL is defined as follows:

1. Size(p) = 1,

2. Size(¬ϕ) = Size(Kaϕ) = Size([G]ϕ) = Size([〈G〉]ϕ) = Size(ϕ)+1,

3. Size(ϕ ∧ψ) = Size(ϕ)+Size(ψ)+1,

4. Size([ψ]ϕ) = Size(ψ)+3 ·Size(ϕ).

The []-depth is defined as follows:

1. d[](p) = 0,

2. d[](¬ϕ) = d[](Kaϕ) = d[]([〈G〉]) = d[](ϕ),

3. d[](ϕ ∧ψ) = max{d[](ϕ),d[](ψ)},
4. d[]([ψ]ϕ) = d[](ψ)+d[](ϕ),

5. d[]([G]ϕ) = d[](ϕ)+1.

The [〈〉]-depth is the same as [], with the following exceptions.

1. d[〈〉]([G]ϕ) = d[〈〉](ϕ),

2. d[〈〉]([〈G〉]ϕ) = d[〈〉](ϕ)+1.

Definition 2.21. The binary relation <Size
[],[〈〉] between ϕ,ψ ∈ LCoGAL is defined as follows: ϕ <Size

[],[〈〉] ψ

iff d[〈〉](ϕ) < d[〈〉](ψ), or, otherwise, d[〈〉](ϕ) = d[〈〉](ψ), and either d[](ϕ) < d[](ψ), or d[](ϕ) = d[](ψ) and
Size(ϕ)< Size(ψ). The relation is a well-founded strict partial order between formulae.

Now, we ensure that the order of complexity is preserved. Case [
∧

i∈G Kiψi]ϕ <Size
[],[〈〉] [G]ϕ is obvious,

since the public announcement on the left-hand side of the inequality is epistemic, and for any epis-
temic formula ψ , d[](ψ) = d[〈〉](ψ) = 0. Case [χ][

∧
i∈G Kiψi]ϕ <Size

[],[〈〉] [χ][G]ϕ holds for the same reason.

The cases for coalitions are identical:
∧

i∈G Kiψi → 〈
∧

i∈G Kiψi ∧
∧

j∈A\G K jχ j〉ϕ <Size
[],[〈〉] [〈G〉]ϕ , and also

[τ](
∧

i∈G Kiψi→ 〈
∧

i∈G Kiψi ∧
∧

j∈A\G K jχ j〉ϕ) <Size
[],[〈〉] [τ][〈G〉]ϕ .

Definition 2.22. The canonical model is the model MC = (WC,∼C,VC), where

• WC is the set of all maximal consistent theories,
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• ∼C is defined as x∼C
a y iff Kax⊆ y,

• x ∈VC iff p ∈ x.

Relation ∼C is equivalence due to axioms A2, A3, and A4.

Definition 2.23. Let ϕ ∈ LCoGAL. Condition P(ϕ): for all maximal consistent theories x, ϕ ∈ x iff
x ∈ JϕKMC . Condition H(ϕ): for all ψ ∈LCoGAL, if ψ <Size

[],[〈〉] ϕ , then P(ψ).

Proposition 2.24. For all ψ ∈LCoGAL, if H(ϕ), then P(ϕ).

Proof. Suppose H(ϕ) holds, and let x be a maximal consistent theory. The proof is by induction on
<Size

[],[〈〉]-complexity of formulae. Most of the cases were proved in [9]. We prove here only remaining
instances involving group and coalition announcements.

Case ϕ = [G]ψ . Suppose that [G]ψ ∈ x. Since x is closed under R5, this is equivalent to ∀χ ∈L G
EL:

[χ]ψ ∈ x. By the fact that [χ]ψ <Size
[],[〈〉] [G]ψ , the latter holds if and only if x ∈ J[χ]ψKMC for all χ ∈L G

EL,
which is equivalent to x ∈ J[G]ψKMC by the semantics.

Case ϕ = [χ][G]ψ . Suppose that [χ][G]ψ ∈ x. Since [χ][G]ψ is a necessity form and x is closed
under R5, this is equivalent to ∀τ ∈L G

EL: [χ][τ]ψ ∈ x. By the fact that [χ][τ]ψ <Size
[],[〈〉] [χ][G]ψ , the latter

holds if and only if x ∈ J[χ][τ]ψKMC for all τ ∈ L G
EL, which is equivalent to x ∈ J[χ][G]ψKMC by the

semantics.
Case ϕ = [〈G〉]ψ . Suppose that [〈G〉]ψ ∈ x. Since x is closed under R6, this is equivalent to ∀χ∈L G

EL

∃τ∈L A\G
EL : χ → 〈χ ∧ τ〉ψ ∈ x. By the fact that χ → 〈χ ∧ τ〉ψ <Size

[],[〈〉] [〈G〉]ψ , the latter holds if and only

if ∀χ∈L G
EL ∃τ∈L

A\G
EL : x ∈ Jχ → 〈χ ∧ τ〉ψKMC which is equivalent to x ∈ J[〈G〉]ψKMC by the semantics.

Case ϕ = [θ ][〈G〉]ψ . Suppose that [θ ][〈G〉]ψ ∈ x. Since [θ ][〈G〉]ψ ∈ x is a necessity form and x is
closed under R6, this is equivalent to ∀χ∈L G

EL ∃τ∈L
A\G

EL : [θ ](χ → 〈χ ∧ τ〉ψ) ∈ x. By the fact that
[θ ](χ → 〈χ ∧ τ〉ψ) <Size

[],[〈〉] [θ ][〈G〉]ψ , the latter holds if and only if ∀χ∈L G
EL ∃τ∈L

A\G
EL : x ∈ J[θ ](χ →

〈χ ∧ τ〉ψ)KMC , which is equivalent to x ∈ J[θ ][〈G〉]ψKMC by the semantics.

Proposition 2.24 implies the following fact.

Proposition 2.25. Let ϕ ∈LCoGAL, and x be a maximal consistent theory. Then ϕ ∈ x iff x ∈ JϕKMC .

Finally, we prove the completeness of CoGAL.

Proposition 2.26. For all ϕ ∈LCoGAL, if ϕ is valid, then ϕ ∈ CoGAL.

Proof. Towards a contradiction, suppose that ϕ is valid and ϕ 6∈ CoGAL. Since CoGAL is a consistent
theory, and by Propositions 2.17 and 2.18, we have that CoGAL+¬ϕ is a consistent theory. Then, by
Proposition 2.19, there exists a maximal consistent theory x ⊇ CoGAL+¬ϕ , such that ¬ϕ ∈ x. By
Proposition 2.25, this means that x 6∈ JϕKMC , which contradicts ϕ being a validity.

3 Conclusion

We presented CoGAL and provided a complete axiomatisation for it. The proof of completeness hinges
on the validity of the axiom 〈[G]〉ϕ→〈G〉[A\G]ϕ . Validity of the other direction of the axiom, however,
is still an open question. Answering it either way, positively, or negatively, will allow us to understand
better mutual expressivity of CAL and GAL. The axiomatisation of CoGAL we presented is infinitary
and employs necessity forms. Finding a finitary axiomatisation is yet another open problem. An interest-
ing avenue of further research is adding common and distributed knowledge operators to CoGAL in the
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vein of [1]. Additionally, since it is known that GAL, CAL [5], and hence CoGAL, are undecidable, a
search for decidable fragments of these logics is another research question. We would also like to investi-
gate applicability of logics with group and coalition announcements to epistemic planning [10]. Finally,
a complete axiomatisation of CAL without group announcement operators has not been provided yet,
and it is an intriguing direction of further research.
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A Coalition and Group Annoucement Logic Subsumes Coalition Logic

Definition A.1. Axiomatisation of CL is as follows:

(C0) all instantiation of propositional tautologies,
(C1) ¬〈[G]〉⊥,
(C2) 〈[G]〉>,
(C3) ¬〈[ /0]〉¬ϕ → 〈[A]〉ϕ,

(C4) 〈[G]〉(ϕ ∧ψ)→ 〈[G]〉ϕ,
(C5) 〈[G]〉ϕ ∧〈[H]〉ψ → 〈[G∪H]〉(ϕ ∧ψ),

if G∩H = /0,
(R0) ` ϕ,ϕ → ψ ⇒` ψ,
(R1) ` ϕ ↔ ψ ⇒` 〈[G]〉ϕ ↔ 〈[G]〉ψ.

Proposition A.2. CoGAL contains CL.

Proof. C0 and R0 are already in CoGAL.
R1: ` ϕ ↔ ψ ⇒` 〈[G]〉ϕ ↔ 〈[G]〉ψ . Assume that|= ϕ ↔ ψ . This means that for any pointed model

(M,w) the following holds: (M,w) |= ϕ iff (M,w) |= ψ (1). Now, suppose that for some pointed model
(M,v) it holds that (M,v) |= 〈[G]〉ϕ . By the semantics, ∃χ∈L G

EL ∀τ∈L
A\G

EL : (M,v) |= χ ∧ [χ ∧ τ]ϕ ,
which is equivalent to the following: (M,v) |= χ and ((M,v) |= χ ∧ τ implies (Mχ∧τ ,v) |= ϕ). By (1),
we have that ∃χ∈L G

EL ∀τ∈L
A\G

EL : (M,v) |= χ and ((M,v) |= χ ∧ τ implies (Mχ∧τ ,v) |= ψ), which is
(M,v) |= 〈[G]〉ψ by the semantics. The same argumet holds in the other direction.

C1: ¬〈[G]〉⊥. From>we derive [〈G〉]> by R4. Using the dual of box, we have ¬〈[G]〉¬>, or ¬〈[G]〉⊥.
C2: 〈[G]〉>. In any state, there exists a true announcement by G (each agent in G announces their

knowledge of a tautology) and after any joint announcement, > is true, hence, the axiom is valid.
C3: ¬〈[ /0]〉¬ϕ → 〈[A]〉ϕ . By the semantics, ¬〈[ /0]〉¬ϕ , which is [〈 /0〉]ϕ , means that there exists some

ψ ∈L A
EL, such that 〈ψ〉ϕ . This is precisely the meaning of 〈[A]〉ϕ .

C4: 〈[G]〉(ϕ∧ψ)→〈[G]〉ϕ . Suppose that 〈[G]〉(ϕ∧ψ) holds. By the semantics, ∃χ∈L G
EL ∀τ∈L

A\G
EL :

χ∧ [χ∧τ](ϕ∧ψ). Then, by A7, we have ∃χ∈L G
EL ∀τ∈L

A\G
EL : χ∧ [χ∧τ]ϕ∧ [χ∧τ]ψ . The latter implies

∃χ∈L G
EL ∀τ∈L

A\G
EL : χ ∧ [χ ∧ τ]ϕ , which is 〈[G]〉ϕ by the semantics.

C5: 〈[G]〉ϕ1∧〈[H]〉ϕ2→〈[G∪H]〉(ϕ1∧ϕ2), if G∩H = /0. Assume that 〈[G]〉ϕ1∧〈[H]〉ϕ2 holds. Let us
consider the first conjunct. By the semantics, we have ∃ψG∈L G

EL ∀χA\G∈L A\G
EL : ψG∧ [ψG∧χA\G]ϕ1 (1).

The latter implies ∃ψG∪H∈L G∪H
EL ∀χA\G∪H∈L A\G∪H

EL : ψG∪H∧ [ψG∪H∧χA\G∪H ]ϕ1. In order to show this

let us assume to the contrary that ∀ψG∪H∈L G∪H
EL ∃χA\G∪H∈L A\G∪H

EL : ψG→ 〈ψG∧ψH ∧ χA\G∪H〉¬ϕ1.

Next, by (1), we fix some ψG. Then, we have ∀ψH∈L H
EL ∃χA\G∪H∈L A\G∪H

EL : ψG → 〈ψG ∧ψH ∧
χA\G∪H〉¬ϕ1, which means that there is a combination of ψH and χA\G∪H that makes ϕ1 false. Since
sets H and A \G∪H comprise A\G (on condition that G∩H = /0), this means that there is some χA\G
which enforces ¬ϕ1. Hence, the contradiction with (1). Similarly, we can prove that ∃ψG∪H∈L G∪H

EL

http://dx.doi.org/10.1007/BFb0022481
http://dx.doi.org/10.1093/logcom/12.1.149
http://dx.doi.org/10.1007/s11229-007-9168-7
http://dx.doi.org/10.1007/978-3-642-04893-7_21
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∀χA\G∪H∈L A\G∪H
EL : ψG∪H ∧ [ψG∪H ∧ χA\G∪H ]ϕ2. By distributivity of [ ] over ∧, we get ∃ψG∪H∈L G∪H

EL

∀χA\G∪H∈L A\G∪H
EL : ψG∪H ∧ [ψG∪H ∧χA\G∪H ] (ϕ1∧ϕ2). Hence 〈[G∪H]〉(ϕ1∧ϕ2).

B Proofs of Propositions

Proposition B.1. R4 and R6 are sound, that is, they preserve validity.

Proof. (R4) Assume that |= ϕ . By R2, for an arbitrary ψ , |= [ψ]ϕ . Since ψ is arbitrary, |= [〈G〉]ϕ; in
other words, whatever agents announce, they cannot make a valid formula false.

(R6) Let (M,w) be an arbitrary pointed model. We proceed by induction on η .
Base case. ∀ψ∈L G

EL ∃χ∈L A\G
EL : ψ → 〈ψ ∧ χ〉ϕ is valid. Therefore, by the semantics, we infer

validity of [〈G〉]ϕ .
Induction hypothesis. Assume the rule preserves validity for n(η(ψ→〈ψ ∧χ〉ϕ) = k. We show that

it holds for k+1.
Case ∀ψ∈L G

EL ∃χ∈L A\G
EL : τ → η(ψ → 〈ψ ∧χ〉ϕ) is valid. This means that (M,w) |= τ → η(ψ →

〈ψ ∧ χ〉ϕ) iff (M,w) |= ¬τ or (M,w) |= η(ψ → 〈ψ ∧ χ〉ϕ), which is (M,w) |= ¬τ or (M,w) |= [〈G〉]ϕ
by Induction hypothesis. Hence, (M,w) |= τ → [〈G〉]ϕ .

Case ∀ψ∈L G
EL ∃χ∈L A\G

EL : Kaη(ψ → 〈ψ ∧ χ〉ϕ) is valid. This means that (M,w) |= Kaη(ψ →
〈ψ ∧ χ〉ϕ). By the semantics, for every v ∈W : (w,v) ∈∼a implies (M,v) |= η(ψ → 〈ψ ∧ χ〉ϕ). By
Induction hypothesis, for every v ∈W : (w,v) ∈∼a implies (M,v) |= η([〈G〉]ϕ). And, by the semantics,
(M,w) |= Kaη([〈G〉]ϕ).

Case ∀ψ∈L G
EL ∃χ∈L A\G

EL : [τ]η(ψ→〈ψ∧χ〉ϕ) is valid. This means that (M,w) |= [τ]η(ψ→〈ψ∧
χ〉ϕ). By the semantics, (M,w) |= τ implies (Mτ ,w) |= η(ψ → 〈ψ ∧ χ〉ϕ). By Induction hypothesis,
(M,w) |= τ implies (Mτ ,w) |= [〈G〉]ϕ . Finally, by the semantics, (M,w) |= [τ][〈G〉]ϕ .

Proposition B.2. 〈[G]〉〈[H]〉ϕ → 〈[G∪H]〉ϕ is valid.

Proof. Let ψ :=
∧

i∈G Kiψi, ψ ′ :=
∧

j∈A\G K jψ
′
j, χ :=

∧
k∈H Kkχk, and χ ′ :=

∧
l∈A\H Klχ

′
l . Suppose

(M,w) |= 〈[G]〉〈[H]〉ϕ for some M and w ∈W . By the semantics,

∃ψ∈L G
EL ∀ψ ′∈L A\G

EL ∃χ∈L H
EL ∀χ

′∈L A\H
EL : (M,w) |= ψ ∧ [ψ ∧ψ

′](χ ∧ [χ ∧χ
′]ϕ).

By A7, we have: (M,w) |=ψ∧ [ψ∧ψ ′]χ∧ [ψ∧ψ ′][χ∧χ ′]ϕ . We are interested now in the third conjunct:
[ψ ∧ψ ′][χ ∧χ ′]ϕ . By A9, we have that (M,w) |= [ψ ∧ψ ′∧ [ψ ∧ψ ′](χ ∧χ ′)]ϕ . Now, let us examine the
following conjunction: ∃ψ∈L G

EL ∀ψ ′∈L
A\G

EL : ψ ∧ψ ′, which is

∃
∧
i∈G

Kiψi ∀
∧

j∈A\G
K jψ

′
j :

∧
i∈G

Kiψi∧
∧

j∈A\G
K jψ

′
j

in the full form. We can present the set of agents A\G as a union of G∪H and H \G by expanding the
right conjunct. So, we have ∃∧i∈G Kiψi ∀

∧
m∈H\G Kmψ ′′m ∀

∧
j∈A\G∪H K jψ

′
j:∧

i∈G

Kiψi∧
∧

m∈H\G
Kmψ

′′
m∧

∧
j∈A\G∪H

K jψ
′
j. (1)
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Since none of the universal quantifiers here is vacuous, there are particular ψ ′′ for which the conjunction
holds. Formally, ∃∧i∈G Kiψi ∃

∧
m∈H\G Kmψ ′′m ∀

∧
j∈A\G∪H K jψ

′
j: (1). Therefore, combining G and

H \G, we have

∃
∧

i∈G∪H

Kiψi ∀
∧

j∈A\G∪H

K jψ
′
j :

∧
i∈G∪H

Kiψi∧
∧

j∈A\G∪H

K jψ
′
j.

The same argument holds for the conjunction ∃χ∈L H
EL ∀χ ′∈L G

EL: χ ∧χ ′. Let us redefine our auxiliary
formulae: ψ :=

∧
i∈G∪H Kiψi, ψ ′ :=

∧
j∈A\G∪H K jψ

′
j, χ :=

∧
i∈G∪H Kkχk, and χ ′ :=

∧
j∈A\G∪H Klχ

′
l . Thus,

we have that ∃ψ∈L G∪H
EL ∀ψ ′∈L A\G∪H

EL ∃χ∈L G∪H
EL ∀χ ′∈L A\G∪H

EL : (M,w) |= [ψ ∧ψ ′∧ [ψ ∧ψ ′](χ ∧
χ ′)]ϕ . In the full form, the latter is

∃
∧

i∈G∪H

Kiψi ∀
∧

j∈A\G∪H

K jψ
′
j ∃

∧
i∈G∪H

Kiχi ∀
∧

j∈A\G∪H

K jχ
′
j :

(M,w) |= [
∧

i∈G∪H

Kiψi∧
∧

j∈A\G∪H

K jψ
′
j ∧ [

∧
i∈G∪H

Kiψi∧
∧

j∈A\G∪H

K jψ
′
j](

∧
i∈G∪H

Kiχi∧
∧

j∈A\G∪H

K jχ
′
j)]ϕ.

Using A7 and A8, we can ‘push’ announcements into the scope of knowledge operators:

(M,w) |= [ψ ∧ψ
′∧ (

∧
i∈G∪H

∧
j∈A\G∪H

(Kiψi∧K jψ
′
j→ Ki[Kiψi∧K jψ

′
j]χi)∧

∧ (Kiψi∧K jψ
′
j→ K j[Kiψi∧K jψ

′
j]χ
′
j))]ϕ.

By propositional reasoning, the latter is equivalent to (M,w) |= [
∧

i∈G∪H
∧

j∈A\G∪H (Kiψi ∧ K jψ
′
j ∧

Ki[Kiψi ∧ K jψ
′
j]χi ∧ K j[Kiψi ∧ K jψ

′
j] χ ′j)]ϕ . Finally, we have

∃
∧

i∈G∪H

Kiψi ∀
∧

j∈A\G∪H

K jψ
′
j ∃

∧
i∈G∪H

Kiχi ∀
∧

j∈A\G∪H

K jχ
′
j :

(M,w) |= [
∧

i∈G∪H

∧
j∈A\G∪H

(Ki(ψi∧ [Kiψi∧K jψ
′
j]χi)∧K j(ψ

′
j ∧ [Kiψi∧K jψ

′
j]χ
′
j))]ϕ.

Conjuncts of the form Ki(ψi ∧ [Kiψi ∧ K jψ
′
j]χi) mean that agent i can announce ψi, i.e. what she

knows now, or [Kiψi ∧ K jψ
′
j]χi (which is equivalent to t([Kiψi ∧ K jψ

′
j]χi)), i.e. what she will know after

announcements of other agents but not necessarily knows now, or both. Since all the variants comprise
L G∪H

EL , we rewrite the notation. Hence, ∃∧i∈G∪H Kiτi ∀
∧

j∈A\G∪H K jτ
′
j: (M,w) |= [

∧
i∈G∪H

∧
j∈A\G∪H

(Kiτi ∧ K jτ
′
j)]ϕ , and at the same time (M,w) |= ∧

i∈G∪H Kiτi (
∧

i∈G Kiψi is equivalent to
∧

i∈G∪H Kiψi,
where agents from H announce >). And, by the semantics, this is (M,w) |= 〈[G∪H]〉ϕ .

Proposition B.3. Let x be a theory, ϕ,ψ ∈LCoGAL, and a ∈ A. The following are theories: x+ϕ = {ψ :
ϕ → ψ ∈ x},Kax = {ϕ : Kaϕ ∈ x}, and [ϕ]x = {ψ : [ϕ]ψ ∈ x}.

Proof. We just expand the proof from [7] by showing that corresponding theories are closed under R5
and R6.

Suppose that η([ψ]χ) ∈ x+ϕ for all ψ ∈L G
EL. It means that ϕ → η([ψ]χ) ∈ x for all ψ ∈L G

EL.
Since ϕ → η([ψ]χ) is a necessity form, and x is closed under R5, we infer that ϕ → η([G]χ) ∈ x,
and, consequently, η([G]χ) ∈ x+ϕ . So, x+ϕ is closed under R5. Now, let ∀ψ∈L G

EL ∃τ∈L
A\G

EL :
η(ψ → 〈ψ ∧ τ〉χ) ∈ x+ϕ . It means that ∀ψ∈L G

EL ∃τ∈L
A\G

EL : ϕ → η(ψ → 〈ψ ∧ τ〉χ) ∈ x. Since
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ϕ → η(ψ → 〈ψ ∧ τ〉χ) is a necessity form, and x is closed under R6, we infer that ϕ → η([〈G〉]χ) ∈ x,
and, consequently, η([〈G〉]χ) ∈ x+ϕ . So, x+ϕ is closed under R6.

Suppose that η([ψ]χ) ∈ Kax for all ψ ∈L G
EL. It means that Kaη([ψ]χ) ∈ x for all ψ ∈L G

EL. Since
Kaη([ψ]χ) is a necessity form, and x is closed under R5, we infer that Kaη([G]χ)∈ x, and, consequently,
η([G]χ) ∈ Kax. So, Kax is closed under R5. Now, let ∀ψ∈L G

EL ∃τ∈L
A\G

EL : η(ψ → 〈ψ ∧ τ〉χ) ∈ Kax.
It means that ∀ψ∈L G

EL ∃τ∈L
A\G

EL : Kaη(ψ → 〈ψ ∧ τ〉χ) ∈ x. Since Kaη(ψ → 〈ψ ∧ τ〉χ) is a necessity
form, and x is closed under R6, we infer that Kaη([〈G〉]χ) ∈ x, and, consequently, η([〈G〉]χ) ∈ Kax. So,
Kax is closed under R6.

Finally, suppose that η([ψ]χ) ∈ [ϕ]x for all ψ ∈L G
EL. It means that [ϕ]η([ψ]χ) ∈ x for all ψ ∈L G

EL.
Since [ϕ]η([ψ]χ) is a necessity form, and x is closed under R5, we infer that [ϕ]η([G]χ) ∈ x, and,
consequently, η([G]χ) ∈ [ϕ]x. So, [ϕ]x is closed under R5. Now, let ∀ψ ∈L G

EL ∃τ ∈L
A\G

EL : η(ψ →
〈ψ ∧ τ〉χ) ∈ [ϕ]x. It means that ∀ψ∈L G

EL ∃τ∈L
A\G

EL : [ϕ]η(ψ → 〈ψ ∧ τ〉χ) ∈ x. Since [ϕ]η(ψ →
〈ψ∧τ〉χ) is a necessity form, and x is closed under R6, we infer that [ϕ]η([〈G〉]χ)∈ x, and, consequently,
η([〈G〉]χ) ∈ [ϕ]x. So, [ϕ]x is closed under R6.

Proposition B.4. Let ϕ ∈LCoGAL. Then CoGAL+ϕ is consistent iff ¬ϕ 6∈ CoGAL.

Proof. From left to right. Suppose to the contrary that CoGAL+ϕ is consistent and ¬ϕ ∈ CoGAL.
Then, having both ϕ and ¬ϕ means that ⊥ ∈ CoGAL+ϕ , which contradicts to CoGAL+ϕ being
consistent.

From right to left. Let us consider the contrapositive: if CoGAL+ϕ is inconsistent, then ¬ϕ ∈
CoGAL. Since CoGAL+ϕ is inconsistent,⊥∈CoGAL+ϕ , or, by Proposition B.3, ϕ→⊥∈CoGAL.
By consistency of CoGAL and propositional reasoning, we have that ¬ϕ ∈ CoGAL.
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