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Abstract6

Communication within groups of agents has been lately the focus of re-7

search in dynamic epistemic logic (DEL). This paper studies a recently8

introduced form of partial (more precisely, topic-based) communication. This9

type of communication allows for modelling scenarios of multi-agent col-10

laboration and negotiation, and it is particularly well-suited for situations11

in which sharing all information is not feasible/advisable. The paper can be12

divided into two parts. In the first part, we present results on invariance and13

complexity of model checking. Moreover, we compare partial communic-14

ation with the public announcement and arrow update settings in terms of15

both language-expressivity and update-expressivity. Regarding the former,16

the three settings are equivalent, their languages being equally expressive.17

Regarding the latter, all three modes of communication are incomparable18

in terms of update-expressivity. In the second part, we shift our attention19

to strategic topic-based communication. We do so by extending the lan-20

guage with a modality that quantifies over the topics the agents can ‘talk21

about’, thus allowing a form of arbitrary partial communication. For this new22

framework, we provide a complete axiomatisation, showing also that the23

new language’s model checking problem is PSPACE-complete. Finally, we24

argue that, in terms of expressivity, this new language of arbitrary partial25

communication is incomparable to that of arbitrary public announcements26

and also to that of arbitrary arrow updates.27
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1 Introduction32

Epistemic logic (EL; Hintikka 1962) is a powerful framework for representing33

knowledge/beliefs of both individual agents and groups thereof. When using34

relational ‘Kripke’ models, its crucial idea is the use of uncertainty for defining35

knowledge. Indeed, such structures assign to each agent a binary relation36

*Extended and revised version of Galimullin and Velázquez-Quesada 2023.
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indicating indistinguishability among epistemic possibilities. Then, it is said37

that an agent i knows that φ is the case (syntactically: Ki φ) when φ holds38

in all situations i considers possible. Despite its simplicity, EL has become39

a widespread tool, contributing to the formal study of complex multi-agent40

epistemic phenomena in philosophy (Hendricks 2006), computer science (Fagin41

et al. 1995), AI (Meyer and van der Hoek 1995) and economics (de Bruin 2010).42

One of the most appealing aspects of EL is that it can be used to reason about43

information change. This has been the main subject of dynamic epistemic logic44

(DEL; van Ditmarsch et al. 2008, van Benthem 2011), a field whose main fea-45

ture is that actions are semantically represented as operations that transform46

the underlying semantic model.1 Within DEL, one of the simplest meaningful47

epistemic actions is that of a public announcement: an external source providing48

the agents with truthful information in a fully public way (Plaza 1989, Ger-49

brandy and Groeneveld 1997). Yet, the agents do not need to wait for some50

external entity to feed them with facts: they can also share their individual51

information with one another. This is arguably a more suitable way of model-52

ling information change in multi-agent (and, in particular, distributed) systems.53

Agents might occasionally receive information ‘from the outside’, but the most54

common form of interaction is the one in which they themselves engage in55

‘conversations’ to share what they have obtained so far. It is this form of in-56

formation exchange that allows independent entities to engage in collaboration,57

negotiation, and so on.58

Agent communication can take several forms, and some variations have59

been explored within the DEL framework. A single agent might share all60

her information with everybody, as modelled in Baltag (2010). Alternatively,61

a group of agents might share all their information only among themselves,62

as represented by the action of “resolving distributed knowledge” studied in63

Ågotnes and Wáng (2017). One can even think about this form of communica-64

tion not as a form of ‘sharing’, but rather as a form of ‘taking’ (Baltag and Smets65

2020, 2021), which allows the study of public and private forms of reading66

someone else’s information (e.g., hacking).67

All these approaches for communication have a common feature: when68

sharing/taking, the agents share/take all the available information. This is of69

course useful, as then one can reason about the best the agents can do together.70

But there are also scenarios (arguably more common) in which sharing all her71

available information might not be feasible or advisable for an agent. For the72

first, there might be constraints on the communication channels; for the second,73

agents might not be in a cooperative scenario, but rather in a competitive74

one. In such cases, one would be rather interested in studying forms of partial75

communication, through which agents share only ‘part of what they know’.76

There might be different ways to make precise what each agent shares, but a77

natural one is to assume that the ‘conversation’ is relative to a subject/topic,78

defined by a given formula χ. Introduced in Velázquez-Quesada (2022), this79

type of communication allows for more realistic modelling of scenarios of80

multi-agent collaboration and negotiation.81

This paper studies different aspects of this partial communication setting.82

1This is different, e.g., from dynamic logic (Harel et al. 2000), where actions are represented as
relations.
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It starts (Section 2) by recalling the underlying framework (EL with distributed83

knowledge). Then, it presents the basics of the partial communication frame-84

work (Section 3), providing definitions (language, semantic interpretation) and85

results (axiom system, structural equivalence, expressivity and complexity of86

model checking) as well as comparing it with two well-known DEL frame-87

works, namely public announcements and arrow updates. The comparison88

shows interesting connections. First, the languages of the three systems are89

equally expressive.2 Then, their ‘update expressivity’ is different. On the one90

hand, in general, the partial communication and public announcement opera-91

tions cannot mimic each other: there are scenarios in which, from the language’s92

point of view, the effect of a public announcement cannot be replicated by par-93

tial communication, and vice versa. On the other hand, partial communication94

and arrow updates cannot in general mimic each other either.95

Still, in truly competitive scenarios, what matters the most is not the effects96

of what is being shared, but rather the decision of what to share. In other words,97

what matters is being able to reason about strategic topic-based communication.98

To do so, this paper introduces (Section 4) a logical framework for quantifying99

over the conversation’s topic, thus allowing arbitrary partial communication. It100

presents the basic definitions, providing then results on invariance, axiom sys-101

tem, expressivity and the complexity of its model checking problem. After that,102

it compares this new setting with that of arbitrary public announcements and103

that of arbitrary arrow updates. In both cases, it is shown that the languages104

are, expressivity-wise, incomparable. The paper closes (Section 5) summarising105

the paper’s contents while also discussing further research lines.106

2 Background107

Models and relative expressivity. Throughout this text, let A be a finite non-108

empty group of agents, and let P be a non-empty enumerable set of atomic109

propositions.110

Definition 2.1 (Model) A multi-agent relational model (from now on, a model)111

is a tuple M = ⟨W,R,V⟩ where W (also denoted as D(M)) is a non-empty112

set of objects called possible worlds, R = {Ri ⊆W ×W | i ∈ A} assigns a binary113

“indistinguishability” relation on W to each agent in A (for G ⊆ A, define RG :=114 ⋂
k∈G Rk), and V : P → ℘(W) is an atomic valuation (with V(p) being the set115

of worlds in M where p ∈ P holds). A pair (M,w), where M is a model and116

w ∈ D(M), is a pointed model, with w being the evaluation point. A model M is finite117

if and only if both W and
⋃

w∈W
{
p ∈ P | w ∈ V(p)

}
are finite. If M = ⟨W,R,V⟩ is118

finite, its size (notation: |M|) is given by |W|+
∑
i∈A|Ri|+

∑
w∈W |
{
p ∈ P | w ∈ V(p)

}
|.◀119

In a model, the agents’ indistinguishability relations are arbitrary. In par-120

ticular, they need to be neither reflexive nor symmetric nor Euclidean nor121

transitive. There are two reasons for this. On the conceptual side, although122

equivalence relations are somehow standard for representing the notion of123

knowledge, several authors have argued against positive and negative intro-124

spection, epistemic properties directly connected to the relational properties of125

2This holds assuming that their epistemic fragment contains the distributed knowledge modal-
ity.
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transitivity and Euclidicity. Indeed, it has been argued that both forms of intro-126

spection are, in many situations, unreachable idealisations that might lead to127

contradictory situations (see, e.g., Lemmon 1967, Danto 1967, Williamson 2002128

for positive introspection, and Hintikka 1962 for negative introspection; see also129

the discussion in the introduction of Fervari and Velázquez-Quesada 2019). On130

the technical side, the partial communication operation (Definition 3.1 below)131

preserves reflexivity but neither transitivity nor Euclidicity. Thus, requiring the132

two latter properties would have made the operation ‘non-suitable’, as it would133

change the class of models.3 If needed, asking for the relations to be reflexive134

is (both conceptually and technically) a safe choice. This paper takes rather a135

more general perspective, working with arbitrary relations. Because of this,136

“knowledge” here is neither truthful nor positively/negatively introspective. It137

rather corresponds, simply, to “what is true in all the agent’s (agents’) epistemic138

alternatives”.139

Definition 2.2 (Relative expressivity) Let L1 and L2 be two languages inter-140

preted over pointed models. It is said that L2 is at least as expressive as L1141

(notation: L1 ≼ L2) if and only if for every ϕ1 ∈ L1 there is ϕ2 ∈ L2 such that142

ϕ1 and ϕ2 have the same truth-value in every pointed model (i.e., (M,w) ⊩ ϕ1143

if and only if (M,w) ⊩ ϕ2 for every M and every w ∈ D(M)). Write L1 ≈ L2144

when L1 ≼ L2 and L2 ≼ L1; write L1 ≺ L2 when L1 ≼ L2 and L2 $ L1; write145

L1 ≍ L2 when L1 $ L2 and L2 $ L1. ◀146

Note: for proving L1 $ L2, it is enough to find two (classes of) pointed147

models that agree on all formulas in L2 but can be distinguished by a formula148

inL1. Indeed, let (N,u) and (N′,u′) be the pointed models indistinguishable by149

L2 and let ϕ1 ∈ L1 be a formula that distinguishes them. For a contradiction,150

suppose L1 ≼ L2. Then, there would be a formula ϕ2 ∈ L2 agreeing with ϕ1 in151

every pointed model; in particular, they would agree in both (N,u) and (N′,u′).152

But (N,u) and (N′,u′) cannot be distinguished by L2, so ϕ2 has the same truth153

value in both pointed models. Then, so does ϕ1, contradicting the fact that it154

can distinguish them.155

Syntax and semantics. Here is this paper’s basic language for describing156

pointed models.157

Definition 2.3 (LanguageL) Formulas φ,ψ in L are given by

φ,ψ ::= p | ¬φ | (φ ∧ ψ) | DG φ

for p ∈ P and ∅ ⊂ G ⊆ A. Boolean constants and other Boolean operators are158

defined as usual. We will also omit parentheses whenever it does not impede159

clarity. Define also Ki φ := D{i} φ and K̂i φ := ¬Ki ¬φ. The set of atoms in a160

formula is defined recursively as usual:161

at(p) :=
{
p
}
, at(¬φ) := at(φ), at(φ ∧ ψ) := at(φ) ∪ at(ψ), at(DG φ) := at(φ).162

Finally, the size of φ, denoted as |φ|, is defined recursively in the standard way:163

|p| := 1, |¬φ| := |φ| + 1, |φ ∧ ψ| := |φ| + |ψ| + 1, |DG φ| := |φ| + 1. ◀164

3Moreover, rule RE
S:χ in Table 2 would not preserve validity.
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The languageL contains a modality DG for each non-empty group of agents165

G ⊆ A. Formulas of the form DG φ are read as “the agents in G know φ dis-166

tributively”; thus, Ki φ is read as “i knows φ distributively”, i.e., “agent i167

knows φ”.168

The use of the modality for distributed knowledge (Hilpinen 1977, Halpern169

and Moses 1984, 1985, 1990) might require further justification. Intuitively, φ is170

distributed knowledge among a group of agents if and only if it follows from the171

combination of the individual knowledge of the group’s members (or, in other172

words, if the agents would know φ by putting all their information together).173

Distributed knowledge thus ‘pre-encodes’ what a group of agents would know174

if they were to share their individual information among themselves. Because175

of this, it will be a very useful tool in this text.176

Now, in models that represent directly the individual knowledge of the177

agents, distributed knowledge has a straightforward definition: put the know-178

ledge of the members of the group together (using the union operation), and179

then get the closure under logical consequence. In relational models, which180

represent rather the agent’s uncertainty, there is also a natural way of defining181

a relation for the agents’ distributed knowledge: given a world w, the group182

G will consider u as possible if and only if, given w, everybody in G considers183

u possible (or, equivalently, no one in G can rule u out). In other words, the184

indistinguishability relation for the distributed knowledge of a group is the185

intersection of the indistinguishability relations of the group’s members. With186

this, the language’s semantic interpretation is as follows.187

Definition 2.4 (Semantic interpretation forL) Let (M,w) be a pointed model188

with M = ⟨W,R,V⟩. The satisfiability relation ⊩ between (M,w) and formulas189

in L is defined inductively.190

(M,w) ⊩ p iffdef w ∈ V(p),

(M,w) ⊩ ¬φ iffdef (M,w) ⊮ φ,

(M,w) ⊩ φ ∧ ψ iffdef (M,w) ⊩ φ and (M,w) ⊩ ψ,

(M,w) ⊩ DG φ iffdef for all u ∈W, if RGwu then (M,u) ⊩ φ.

191

Given a model M and a formula φ,192

• the set
�
φ
�M :=

{
w ∈ D(M) | (M,w) ⊩ φ

}
contains the worlds in D(M) in193

which φ holds (also called φ-worlds);194

• the (note: equivalence) relation

∼
M
φ := (

�
φ
�M
×
�
φ
�M) ∪ (

�
¬φ
�M
×
�
¬φ
�M)

splits D(M) into (up to) two equivalence classes: one containing all φ-195

worlds, and the other containing all ¬φ-worlds.196

A formulaφ is valid (notation: ⊩ φ) if and only if (M,w) ⊩ φ for every w ∈ D(M)197

of every model M. ◀198

Axiom system. The axiom system L (Table 1; Halpern and Moses 1990, Fagin199

et al. 1992) characterises the valid formulas in L. The behaviour of Boolean200

operators is taken care of by PR and MP. For the modality DG, while rule201

GD indicates that it ‘contains’ all validities, axiom KD indicates that it is closed202
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PR: ⊢ φ for φ a propositionally valid scheme

MP: If ⊢ φ and ⊢ φ→ ψ then ⊢ ψ

KD: ⊢ DG(φ→ ψ)→ (DG φ→ DG ψ) GD: If ⊢ φ then ⊢ DG φ

MD: ⊢ DG φ→ DG′ φ for G ⊆ G′

Table 1: Axiom system L.

under modus ponens, and axiom MD states that it is monotone on the group of203

agents (if φ is distributively known by G, then it is also distributively known by204

any larger group G′).205

Theorem 1 The axiom system L (Table 1) is sound and strongly complete for L w.r.t.206

the given class of models. ■207

Structural equivalence. When discussing the expressivity of a language, it is208

useful to have a semantic notion that connects two pointed models when they209

cannot be distinguished by the language’s formulas. For the basic modal210

language (Boolean operators plus modalities for the individual relations), the211

notion of bisimulation plays this role (see, e.g., Blackburn et al. 2001, Definition212

2.18 and Theorem 2.20). When the modality for distributed knowledge is213

included, one needs rather the notion of collective bisimulation (Roelofsen 2007),214

which expands on a standard bisimulation by asking for the forth and back215

clauses to be satisfied not only by all singletons {i} ⊆ A but also by all groups216

of agents G ⊆ A. The definition provided below makes a further generalisation,217

making the relevant set of atoms a parameter. This will be useful for discussing218

the expressivity of languages that quantify over information change (Section 4).219

Definition 2.5 (Collective Q-bisimulation) Let Q ⊆ P be a set of atoms; let M =220

⟨W,R,V⟩ and M′ = ⟨W′,R′,V′⟩ be two models. A non-empty relation Z ⊆221

W × W′ is a collective Q-bisimulation between M and M′ if and only if every222

(u,u′) ∈ Z satisfies the following.223

• Atoms. For every p ∈ Q: u ∈ V(p) if and only if u′ ∈ V′(p).224

• Forth. For every G ⊆ A and every v ∈ W: if RGuv then there is v′ ∈ W′ such225

that both R′Gu′v′ and (v, v′) ∈ Z.226

• Back. For every G ⊆ A and every v′ ∈W′: if R′Gu′v′ then there is v ∈W such227

that both RGuv and (v, v′) ∈ Z.228

Write M⇄QC M′ if and only if there is a collective Q-bisimulation between M and229

M′. Write (M,w)⇄QC (M′,w′) if and only if a witness for M⇄QC M′ contains the230

pair (w,w′). If Q is the full set of atoms P, it will be omitted from the notation.◀231

Note that the relation of collective Q-bisimilarity is an equivalence relation,232

both on models and pointed models.4233

The following proposition shows that a collective bisimulation is useful for234

our purposes: the language L is invariant under collective bisimilarity.235

4Indeed, take arbitrary pointed models (M,w), (M′,w′) and (M′′,w′′). Then, (i) the identity
relation on W is a witness for both M⇄QC M and (M,w)⇄QC (M,w); (ii) if Z ⊆ W ×W′ is a witness
for M ⇄QC M′ (resp., (M,w) ⇄QC (M′,w′)), then Z−1

⊆ W′ ×W is a witness for M′ ⇄QC M (resp.,
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Theorem 2 (⇄C impliesL-equivalence) Let (M,w) and (M′,w′) be two pointed236

models; take Q ⊆ P. If (M,w)⇄QC (M′,w′) then, for every ψ ∈ L with at(ψ) ⊆ Q,237

(M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ.238

Proof. Proofs showing that a form of structural equivalence implies invariance239

for a language usually proceed by structural induction on the language’s for-240

mulas.5 For the case of collective bisimilarity and L, see Roelofsen (2007). ■241

Model checking The complexity of the model checking problem for L (given242

a pointed model and a formula in L, decide whether the formula is true at the243

pointed model) is in P Fagin et al. (1995, Page 67).244

3 Partial communication245

The intuition behind the action of partial communication is that, through it,246

a group of agents S ⊆ A share, with everybody, all their information about a247

given topic χ. Before looking at its formal definition, it is useful to consider the248

definition of a simpler action: one through which the agents in S share all their249

information with everybody.6250

After agents in S share all their information with everybody, a given agent i251

at a world w will consider a world u possible if and only if neither her nor any252

agent in S could rule out u from w before the action. In other words, after this253

full communication action, an agent i will consider a world u possible from a254

world w if and only if she and every agent in S already considered u possible255

from w. This means that, after the action, i’s indistinguishability relation is256

the intersection of the relations Ri and RS: edges that are not labelled by all257

communicating agents will be removed.258

Now, suppose the agents in S share only ‘their information about χ’ (intuit-259

ively, only what has allowed them to distinguish between χ- and ¬χ-worlds).260

In such case, as argued in Velázquez-Quesada (2022), edges between worlds261

agreeing in χ’s truth-value are not ‘part of the discussion’, and thus they should262

not be eliminated. In other words, only edges connecting worlds disagreeing263

in χ’s truth-value can be eliminated, and they will be eliminated if and only if264

they are not labelled by all communicating agents.265

3.1 Syntax, semantics, and model checking266

Definition 3.1 (Partial communication) Let M = ⟨W,R,V⟩ be a model; take a267

group of agents S ⊆ A and a formula χ. The model MS:χ = ⟨W,RS:χ,V⟩, the268

result of agents in S sharing all they know about χwith everybody, is such that269

(M′,w′) ⇄QC (M,w)); (iii) if Z1 ⊆ W × W′ and Z2 ⊆ W′ × W′′ are witnesses for M ⇄QC M′ and
M′ ⇄QC M′′ (resp., (M,w) ⇄QC (M′,w′) and (M′,w′) ⇄QC (M′′,w′′)), then Z2 ◦ Z1 is a witness for
M⇄QC M′′ (resp., (M,w)⇄QC (M′′,w′′)).

5The proofs typically start by pulling out the universal quantifier over formulas. This way,
the statement becomes “for every ψ (containing only atoms from Q), any structurally equivalent pointed
models agree on ψ’s truth-value”. This yields a stronger inductive hypothesis (IH) thanks to which
the proof can go through. This will be done throughout the rest of the text.

6Cf. the resolving action of Ågotnes and Wáng (2017), through which a group of agents share all
their information within themselves.
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RS:χi := Ri ∩ (RS ∪ ∼M
χ ). ◀270

A couple of observations are useful.271

• First, the indistinguishability relation for the distributed knowledge of a group
of agents G in the new model (i.e., the intersection of the new indistin-
guishability relations), denoted as RS:χG, can be written in a slightly simpli-
fied way:

RS:χG =
⋂
i∈G

RS:χi =
⋂
i∈G

(Ri ∩ (RS ∪∼M
χ )) = RG ∩ (RS ∪∼M

χ ) = RG∪S ∪ (RG ∩∼M
χ ).

• Second: R∅:χ
i = Ri. Thus, if the set of communicating agents S is empty,272

indistinguishability (and hence knowledge) remains the same.273

On the syntactic side, the following modality is useful for describing the274

effects of the action of partial communication.275

Definition 3.2 (Modality [S: χ] and languageLPC ) DefineLPC[0] := L, where276

PC stands for partial communication. Then, define LPC[i+1] as the result of ex-277

tending LPC[i] with an additional modality [S:χ] for S ⊆ A and χ ∈ LPC[i]. The278

languageLPC is the union of allLPC[n] with n ∈N, thus essentially extending279

L with a modality [S:χ] for each S ⊆ A and each formula χ. The set of atoms280

and size for formulas in LPC is as in Definition 2.3 with the additional clauses281

at([S:χ]φ) := at(χ) ∪ at(φ) and |[S:χ]φ| := |χ| + |φ| + 1, respectively. For the282

semantic interpretation,283

(M,w) ⊩ [S:χ]φ iffdef (MS:χ,w) ⊩ φ.284

Define ⟨S:χ⟩φ := ¬ [S:χ]¬φ. Note how this implies ⊩ ⟨S:χ⟩φ↔ [S:χ]φ. ◀285

Further motivation and details on the partial communication setting can be286

found in Velázquez-Quesada (2022). Still, here are two properties that help to287

understand what the action does.288

• If ⊩ χ1 ↔ χ2 then ⊩ [S:χ1]φ ↔ [S:χ2]φ: logically equivalent topics have289

the same communication effect.290

• ⊩ [S:χ]φ ↔ [S:¬χ]φ: communication on a topic is just as communication291

on its negation.292

Finally, note that partial communication is not a generalisation of an action293

through which some agents share all their information. For this to be the294

case, the “some agents share all” action should be a particular instance of the295

partial communication setting, and this is not the case: there is no formula χ296

such that, in every possible situation, communication about χ is equivalent to297

communication about all topics.298

Axiom system. The axioms and rule of Table 2 form, together with those in
Table 1, a sound and strongly complete axiom system for LPC . They rely on
the DEL reduction axioms technique (for an explanation, see Wang and Cao
2013 or van Ditmarsch et al. 2008, Section 7.4), which, in turn, crucially relies
on the existence of a (recursively defined) truth-preserving translation from
LPC to L. In the translation, axiom AD

S:χ is the central one, as it characterises
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Ap
S:χ: ⊢ [S:χ] p ↔ p

A¬S:χ: ⊢ [S:χ]¬φ ↔ ¬ [S:χ]φ

A∧S:χ: ⊢ [S:χ](φ ∧ ψ) ↔ ([S:χ]φ ∧ [S:χ]ψ)

AD
S:χ: ⊢ [S:χ] DG φ ↔ (DS∪G [S:χ]φ ∧Dχ

G
[S:χ]φ)

RES:χ: If ⊢ φ1 ↔ φ2 then ⊢ [S:χ]φ1 ↔ [S:χ]φ2

Table 2: Additional axioms and rules for LS:χ.

distributed knowledge after the operation in terms of distributed knowledge
about the effects of the operation. Using the abbreviation

Dχ
G
φ := (χ→ DG(χ→ φ)) ∧ (¬χ→ DG(¬χ→ φ))

(“agents in G know distributively that χ’s truth value, regardless of what it is, implies φ”),

the axiom indicates that a group G knows φ distributively after the action299

([S:χ] DG φ) if and only if the group S ∪ G knew, distributively, that φ would300

hold after the action (DS∪G [S:χ]φ) and the agents in G know distributively that301

χ’s truth-value, regardless of what it is, implies that the action will make φ true302

(Dχ
G

[S:χ]φ).303

From these axioms and rule (Table 2) together with their induced translation304

(see Velázquez-Quesada 2022 for details), the following theorem follows.305

Theorem 3 The axiom system LS:χ (Table 1+Table 2) is sound and strongly complete306

for LPC .307

So far this section has recalled basic definitions and results from the par-308

tial communication setting. The following results on structural equivalence,309

expressivity and complexity, are new.310

Structural equivalence. As it turns out, the partial communication modality311

[S:χ] (and thus, from Theorem 2, the full language LPC ) is invariant under312

collective bisimilarity.313

Theorem 4 (⇄C impliesLPC -equivalence) Let (M,w) and (M′,w′) be two poin-314

ted models; take Q ⊆ P. If (M,w)⇄QC (M′,w′) then, for everyψ ∈ LPC with at(ψ) ⊆ Q,315

(M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ.316

Proof. The language LPC is the union of LPC[n] for all n ∈N, so the proof pro-317

ceeds by induction on n. In fact, the text proves a stronger statement: for every318

ψ ∈ LPC with at(ψ) ⊆ Q and every (M,w) and (M′,w′), if (M,w) ⇄QC (M′,w′)319

then (1) (M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ, and (2) (MS:ψ,w) ⇄QC (M′
S:ψ,w

′).320

Details can be found in the appendix. ■321

Expressivity. It is clear that L ≼ LPC, as every formula in the former is also322

in the latter. Moreover: the reduction axioms in Table 2 define a (recursive)323

translation tr : LPC → L such that φ ∈ LPC implies ⊩ φ ↔ tr(φ) (for details,324
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see Velázquez-Quesada 2022).7 This implies LPC ≼ L and thus L ≈ LPC: the325

languages L and LPC are equally expressive.326

Model checking Now we address the complexity of the model checking prob-327

lem for LPC by providing an algorithm that works in polynomial time (in the328

sizes of an input model and formula). In particular, we interested in the global329

model checking problem.330

Definition 3.3 Given a finite model M = ⟨W,R,V⟩ and a formula φ ∈ LPC, the331

global model checking problem for LPC consists in finding all w ∈ W such that332

(M,w) ⊩ φ. ◀333

Given a finite pointed model (M,w) and a formula φ ∈ LPC, the model334

checking strategy uses an ordered list containing the subformulas that need to335

be evaluated for deciding whether φ holds at (M,w). Intuitively, the ordering336

allows the algorithm to deal with formulas inside communication modalities337

(i.e., the χ’s in [S:χ]ψ) before dealing with formulas within the scope of such338

modalities (i.e., the ψ’s in [S:χ]ψ). In this way, when [S:χ]ψ needs to be339

evaluated, the effects of [S:χ] on the model are already known.340

To obtain such a list, use a strategy similar to that in Kuijer (2015). Start by341

creating the set subm(φ, ϵ), which contains all subformulas and partial commu-342

nication modalities inφ, taking additional care of labelling all these expressions343

with the sequence α of partial communication modalities inside the scope of344

which they appear (here, ϵ is the empty string). Using “·” for concatenation,345

the function subm is recursively defined as346

subm(p, α) :=
{
pα
}

subm(¬φ, α) :=
{
(¬φ)α

}
∪ subm(φ, α)

subm(φ ∧ ψ, α) :=
{
(φ ∧ ψ)α

}
∪ subm(φ, α) ∪ subm(ψ, α)

subm(DG φ, α) :=
{
(DG φ)α

}
∪ subm(φ, α)

subm([S:χ]φ, α) :=
{
([S:χ]φ)α , [S:χ]α

}
∪ subm(χ, α) ∪ subm(φ, α·[S:χ])

347

As an example, consider the formula [S1: p ∧ q] [S2: q] DG p. According to the
definition above, the set subm([S1: p ∧ q] [S2: q] DG p, ϵ) is given by [S1: p ∧ q] [S2: q] DG p , [S1: p ∧ q] , p ∧ q , p , q , ([S2: q] DG p)[S1: p∧q] ,

[S2: q] [S1: p∧q] , q[S1: p∧q] , (DG p)[S1: p∧q] [S2: q] , p[S1: p∧q] [S2: q]


Then, obtain the required ordered list by ordering the elements of subm(φ, ϵ)348

in the following way: for ψσ1 , ψ
τ
2 (with σ and τ the labellings)8 we have that ψσ1349

precedes ψτ2 if and only if350

• ψσ1 and ψτ2 appear within some modalities [S:χ], and σ < τ,9 or else351

• ψσ1 appears within some [S:χ], and ψτ2 does not, or else352

7Note: the translation’s complexity might be exponential, as it is for similar DELs (e.g., public
announcement: Lutz 2006).

8We would like to reiterate that since we include in subm(φ, ϵ) not only subformulas of φ but
modalities [S:χ] appearing in φ as well, elements ψσ1 and ψτ2 are not necessarily formulas.

9That is, σ is a proper prefix of τ.
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• ψσ1 is some modality [S:χ], ψτ2 is not, and σ < τ, or else353

• neither ψσ1 nor ψτ2 appear in some modalities [S:χ], and τ < σ, or else354

• both ψσ1 are ψτ2 are some modalities [S:χ], and σ < τ, or else355

• σ = τ, and ψσ1 is either a subformula of ψτ2 or is a modality appearing in ψτ2,356

or else357

• ψ1 appears to the left of χ in φ.358

As an example, ordering the elements of subm([S1: p ∧ q] [S2: q] DG p, ϵ) yields

p , q , p ∧ q , [S1: p ∧ q] , q[S1: p∧q] , [S2: q] [S1: p∧q] , p[S1: p∧q] [S2: q] , (DG p)[S1: p∧q] [S2: q] ,

([S2: q] DG p)[S1: p∧q] , [S1: p ∧ q] [S2: q] DG p

Note how, for a given formula φ, the number of elements in subm(φ) (the359

subformulas and partial communication modalities in φ) is bounded by O(|φ|).360

Once the list subm(φ) is ready, run the labelling Algorithm 1, which is361

inspired by the model checking procedure for epistemic logic (Halpern and362

Moses 1992). The crucial difference is that, besides labelling worlds (with363

the subformulas of φ that are true), the algorithm also labels relations (case364

[S:χ]σ). With this, it is possible to keep track of which relations ‘survive’ the365

model transformations indicated by the partial communication modalities. This366

labelling of relations is then used when evaluating formulas with the epistemic367

operators (DG χ)σ: one only needs to evaluate χ in those worlds accessible via368

relations that have ‘survived’ up to the current stage of the run.369

Algorithm 1 An algorithm for model checking for LPC370

1: procedure GlobalMC(M, φ)371

2: for all ψσ ∈ subm(φ) do372

3: for all w ∈W do373

4: case ψσ = pσ374

5: if w ∈ V(p) then375

6: label w with pσ376377378

7: case ψσ = (¬χ)σ379

8: if w is not labelled with χσ then380

9: label w with (¬χ)σ381382383

10: case ψσ = (χ ∧ ξ)σ384

11: if w is labelled with χσ and ξσ then385

12: label w with (χ ∧ ξ)σ386387388

13: case ψσ = (DG χ)σ389

14: check← true390

15: for all (w, v) ∈ RG do391

16: if (w, v) is labelled with σ then392

17: if v is not labelled with χσ then393

18: check← false394

19: break395396397398

20: if check then399

21: label w with (DG χ)σ400401402

22: case ψσ = [S:χ]σ403

23: for all i ∈ A do404

24: for all (v,u) ∈ Ri do405

25: if (v,u) is labelled with σ then406

26: if v is labelled with χ iff u is labelled with χ then407

27: label (v,u) with σ, [S:χ]408

28: else409
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29: check← true410

30: for all j ∈ S do411

31: if (v,u) < Rj then412

32: check← false413

33: break414415416

34: if check then417

35: label (v,u) with σ, [S:χ]418419420421422423424

36: case ψσ = ([S:χ] ξ)σ425

37: if w is labelled with ξσ·[S:χ] then426

38: label w with ([S:χ] ξ)σ427428429430431432

Correctness of the algorithm can be shown by an induction onφ, noting that433

cases of the algorithm mimic the definition of semantics. From a computational434

perspective, the preparation of the ordered list from subm(φ) can be done in435

O(|φ|2) steps: one loop to go over the elements of subm(φ), and a nested436

loop to compare the current element ψσ1 to other elements ψτ2 according to the437

introduced ordering procedure. The running time of GlobalMC is bounded438

by O(|φ| · |W| · |A|2 · |R|) for the case of [S:χ]σ.439

Theorem 5 The model checking problem for LPC is in P. ■440

3.2 Partial communication vs. public announcements441

The action of partial communication is, in a sense, related to that of a pub-442

lic announcement: both are epistemic actions through which agents receive443

information about the truth-value of a specific formula. Still, there is an im-444

portant difference: while in a public announcement the information comes445

from an external source, in partial communication the information comes from446

agents in the model. It makes sense to discuss the relationship between their447

formal representations.448

Under its standard definition (Plaza 1989), the public announcement of a449

formula ξ transforms a model by eliminating all ¬ξ-worlds. For a fair com-450

parison with the partial communication action, here is an alternative public451

announcement definition that rather removes edges connecting worlds that452

disagree on ξ’s truth-value (van Benthem and Liu 2007).10
453

Definition 3.4 (Public announcement) Let M = ⟨W,R,V⟩ be a model; take a454

formula ξ. The model Mξ = ⟨W,Rξ,V⟩, which is the result of an external source455

informing all the agents that ξ is the case, is defined such that456

Rξi := Ri ∩ ∼M
ξ . ◀457

Note how the indistinguishability relation for a group of agents G in the new458

model, denoted as RξG, is simply RG ∩∼M
ξ . More importantly, in the model that459

results from this edge-deleting operation, the ξ-region (the partition contain-460

ing the worlds satisfying ξ) is collectively P-bisimilar (and, in fact, identical)461

to the model produced by the standard world-removing version. Thus, when462

evaluating formulas on worlds in this ξ-region, the outcomes from both op-463

erations are, as far as L can tell, the same. That we do stay in this region is464

10Cf. Gerbrandy and Groeneveld (1997), which removes only edges pointing to ¬ξ-worlds.
The option used here has the advantage of behaving, with respect to the preservation of certain
relational properties, as the standard definition does (see the discussion after Definition 3.4).
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guaranteed by the precondition in the semantic interpretation of the modality465

[ξ] below (Definition 3.5). It is also useful to notice that the operation preserves466

reflexivity, transitivity and symmetry: if Ri has any of those properties, then so467

has Rξi, as it is then the intersection of two reflexive, transitive and symmetric468

relations.469

Proposition 1 Let M = ⟨W,R,V⟩ be a model, and let ξ be a formula. Recall (Plaza
1989) that the world-removing public announcement of ξ on M yields the model
M′ξ = ⟨⟦ξ⟧

M , {R′i | i ∈ A},V′⟩ with

R′i := Ri ∩ (⟦ξ⟧M
× ⟦ξ⟧M) and V′(p) := V(p) ∩ ⟦ξ⟧M .

Now, take any w in the domain of M′ξ (that is, any w ∈ ⟦ξ⟧M). Then,470

(Mξ,w)⇄C (M′ξ,w).471

Proof. Intuitively, the difference between the world-removing and edge-deleting
approaches makes no difference for a collective bisimulation: in both cases, the
¬ξ-partition becomes inaccessible from the ξ-partition, where the world w lies.
Formally, it is enough to prove that the relation

Z := {(u,u) ∈ (W × ⟦ξ⟧M) | u ∈ ⟦ξ⟧M
}

is a collective bisimulation (between Mξ and M′ξ) containing the pair (w,w).472

Details can be found in the appendix. ■473

For the language, here is a modality for describing the operation’s effect.474

Definition 3.5 (Modality [ξ]) Define LPA[0] := L, where PA stands for public475

announcements. Then, define LPA[i+1] as the result of extending LPA[i] with an476

additional modality [ξ] for ξ ∈ LPA[i]. The language LPA is the union of all477

LPA[n] with n ∈ N, thus essentially extending L with a modality [ξ] for each478

formula ξ. The set of atoms for formulas in LPA is as in Definition 2.3 with the479

additional clause at([ξ]φ) := at(ξ) ∪ at(φ). For the semantic interpretation,480

(M,w) ⊩ [ξ]φ iffdef (M,w) ⊩ ξ implies (Mξ,w) ⊩ φ.481

Define ⟨ξ⟩φ := ¬ [ξ]¬φ. Note how this implies ⊩ ⟨ξ⟩φ↔ (ξ ∧ [ξ]φ). ◀482

Following the strategy used in the proof of Theorem 4, it can be shown that483

LPA is invariant under collective bisimilarity.484

Theorem 6 (⇄C impliesLPA -equivalence) Let (M,w) and (M′,w′) be two poin-485

ted models; take Q ⊆ P. If (M,w)⇄QC (M′,w′) then, for every ψ ∈ LPA with at(ψ) ⊆ Q,486

(M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ.487

Proof. See the appendix. ■488

Finally, an axiom system can be obtained by using the reduction axioms489

technique, with the crucial axiom being [ξ] DG φ ↔ (ξ → DG [ξ]φ) (Wáng490

and Ågotnes 2013). As before, the existence of the reduction axioms implies491

LPA ≼ L. This, together with the straightforward L ≼ LPA, implies L ≈ LPA:492
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the languages L and LPA are equally expressive. With the basics of the edge-493

deleting public announcement presented/recalled, it is now possible to compare494

it with the partial communication proposal.495

When comparing the partial communication and public announcements496

settings, a natural question is about the languages’ relative expressivity. The497

answer is simple: LPC and LPA are both reducible to L, and thus they are498

equally expressive.499

Then, at the semantic level, one might wonder whether the operations can500

‘mimic’ each other. More precisely, one can ask the following.501

• Given ξ ∈ L, are there S ⊆ A and χ ∈ L such that Mξ ⇄C MS:χ for every M?502

In symbols: does ∀ξ .∃S .∃χ .∀M . (Mξ ⇄C MS:χ) hold?503

• Given S ⊆ A and χ ∈ L, is there ξ ∈ L such that MS:χ ⇄C Mξ for every M?504

In symbols: does ∀S .∀χ .∃ξ .∀M . (MS:χ ⇄C Mξ) hold?505

Some known model-update operations have this relationship. For example, the506

action models of Baltag et al. (1998) generalise standard public announcements:507

for every formula ξ there is an action model that, when applied to any relational508

model, produces exactly the one that a public announcement of ξ does. For509

another example, edge-deleting versions of a public announcement (both that in510

Gerbrandy and Groeneveld 1997 and that in Definition 3.4, borrowed from van511

Benthem and Liu 2007) can be represented within the arrow update framework512

of Kooi and Renne (2011), as it will be discussed later (Subsection 3.3).513

Here, the answer to the first question is straightforward: the agents might514

not have, even together, the information that a public announcement provides.515

Fact 1 Take A = {a} and P =
{
p
}
; consider the (reflexive and symmetric) model M516

below on the left. A public announcement of p yields the model Mp on the right.517

p a
p
⇒

p

M Mp

518

Now, there are no S ⊆ A and χ ∈ L such that MS:χ ⇄C Mp. The group S can be only519

∅ or {a} and, in both cases, RS:χa = Ra, regardless of the formula χ. ■520

Thus, ∀M .∀ξ .∃S .∃χ . (Mξ ⇄C MS:χ) fails: for the given model, the effect521

of a public announcement of p cannot be replicated by any act of partial com-522

munication. This answers negatively the (stronger) first question above: there523

are no agents S and topic χ that can replicate the given public announcement524

in every model.525

The answer to the second question is interesting: through partial commu-526

nication, the agents can reach epistemic situations that cannot be reached by a527

public announcement.528

Fact 2 Take A = {a, b} and P =
{
p, q
}
; consider the (reflexive and symmetric) model M529

below on the left. A partial communication between all agents about p↔ q (equivalence530

classes highlighted) yields the model M{a,b}: (p↔q) on the right.531
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p

p, q

a, b

a

a {a,b}: (p↔q)
⇒

p

p, q

a, b a

M M{a,b}: (p↔q)

532

Now, there is no ξ ∈ L such that Mξ ⇄C M{a,b}: (p↔q). For this, note that a public533

announcement preserves the transitivity of indistinguishability relations; yet, while all534

relations in M are transitive, that for a in M{a,b}: (p↔q) is not. ■535

Thus, ∀M .∀S .∀χ .∃ξ . (MS:χ ⇄C Mξ) fails: for the given model, the effect536

of a ‘conversation’ among a and b on p↔ q cannot be replicated by any public537

announcement. This answers negatively the (stronger) second question above:538

there is no χ that can replicate the given partial communication in every model.539

3.3 Partial communication vs. arrow updates540

While a public announcement removes all edges between worlds disagreeing541

on the truth-value of the given formula, the arrow update framework (Kooi and542

Renne 2011) allows for a more refined transformation of a model’s relations. An543

arrow update U is a finite set of edge specifications represented by triples of the544

form (ξ, i, χ). Intuitively, each triple in U prescribes to retain, in the updated545

model, those edges labelled with i that go from a ξ-world to a χ-world. In this546

way, arrow updates can target particular edges in a model.547

Definition 3.6 (Modality [U]) Define LAU[0] := L, where AU stands for ar-548

row updates. Then, define LAU[i+1] as the result of extending LAU[i] with549

an additional modality [U], for U a finite list (ξ1, i1, χ1), . . . , (ξm, im, χm) with550

ξ j, χ j ∈ LAU[i] and i j ∈ A for 1 ⩽ j ⩽ m. The language LAU is the union of all551

LAU[n] with n ∈ N. The set of atoms for formulas in LAU is as in Definition 2.3552

plus the clause at([U]φ) :=
⋃

(ξ,i,χ)∈U(at(ξ) ∪ at(χ)) ∪ at(φ). The semantics of553

arrow update formulas is defined as554

(M,w) ⊩ [U]φ iffdef (MU,w) ⊩ φ,555

where MU = ⟨W,RU,V⟩ and556

RU
i := {(u,u′) ∈ Ri | ∃(ξ, i, χ) ∈ U : (M,u) ⊩ ξ and (M,u′) ⊩ χ}. ◀557

For structural invariance, that collectively bisimilarity implies equivalence558

w.r.t. formulas in LAU can be shown by a straightforward extension of the559

corresponding proof (van Ditmarsch et al. 2017, Lemma 3) for the original arrow560

update language, which lacks the distributed knowledge modality (instead561

using only knowledge modalities for single agents; Kooi and Renne 2011).562

Theorem 7 (⇄C impliesLAU-equivalence) Let (M,w) and (M′,w′) be two poin-563

ted models; take Q ⊆ P. If (M,w)⇄QC (M′,w′) then, for every ψ ∈ LAU with at(ψ) ⊆ Q,564

(M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ. ■565
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For the axiomatisation, we need to resolve a technicality. The original arrow566

update language lacks the distributed knowledge modality, but the just-defined567

LAU uses it. Thus, we cannot reuse reduction axioms of the original paper ‘as568

is’; some gentle modification is required.569

The crucial reduction axiom from Kooi and Renne (2011) is

[U] Ki φ↔
∧

(ξ,i,χ)∈U

(ξ→ Ki(χ→ [U]φ)).

Now, given an arrow update U and a group of agents G, we can construct sets
of triples of the form

{
(
∧
i∈G ξi, i,

∧
i∈G χi) | i ∈ G

}
, where for each i ∈ G there is

one ξi (resp. one χi) in
∧
i∈G ξi (resp.

∧
i∈G χi) such that (ξi, i, χi) ∈ U. Setting

ξG :=
∧
i∈G ξi and χG :=

∧
i∈G χi, the set of all such triples {(ξG, i, χG) | i ∈ G} is

denoted by UG. Intuitively, an edge labelled with G from u to u′ is preserved in
a model M if there are triples {(ξG, i, χG) | i ∈ G} ⊆ UG such that (M,u) ⊩ ξG and
(M,u′) ⊩ χG for each i ∈ G. Hence, the reduction axiom for the interaction of
arrow updates and distributed knowledge is

[U] DG φ↔
∧

{(ξG,i,χG)|i∈G}⊆UG
(ξG → DG(χG → [U]φ)).

The soundness of the axiom can be shown similarly to the soundness proof from570

Kooi and Renne (2011). The completeness of the system resulting from adding571

this axiom can be proved with the standard ‘reduction axioms’ technique. This572

shows that L and LAU are equally expressive, which then implies that so are573

the latter and the partial communication language LPC .574

This changes slightly once we compare update expressivity. On the one575

hand, the effects of certain arrow updates cannot be replicated by partial com-576

munication. This follows from Fact 1 and the fact that the effect of an edge-577

removing public announcement with ξ (Definition 3.4) can be modelled by the578

arrow update {(ξ, i, ξ), (¬ξ, i,¬ξ) | i ∈ A}.11
579

Fact 3 Take A = {a} and P =
{
p
}
; consider the (reflexive and symmetric) models M580

and Mp from Fact 1. When applied to M, the arrow update U :=
{
(p, a, p), (¬p, a,¬p)

}
581

will produce the model Mp. Still, as argued in Fact 1, no partial communication can582

transform M into a model that is collectively bisimilar to Mp. ■583

On the other hand, partial communication modalities can cut relations to584

collectively bisimilar states, which cannot be replicated by any arrow updates.585

Hence, partial communication and arrow updates are, update expressivity586

wise, incomparable.587

Fact 4 Take A = {a, b, c} and P =
{
p
}
; consider the model M below on the left. A partial588

communication of agent a on topic p (equivalence classes highlighted) yields the model589

M{a}: p on the right.590

11As shown in Kooi and Renne (2011), arrow updates can also mimic the version of public
announcements from Gerbrandy and Groeneveld (1997), which removes only edges pointing to
¬ξ-worlds (via the arrow update {(⊤, i, ξ) | i ∈ A}) as well as the world removing versions from
(Plaza 1989) (via {(⊤, i, ξ) | i ∈ A} and an adequate additional modality).
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p u1

u2

a, c

b, c {a}: p
⇒

p u1

u2

a, c

M M{a}: p

■591

However, there is no arrow update U such that MU is collectively bisimilar to M{a}: p.592

For doing so, one would need a clause (ξ, c, χ) in U with a formula χ ∈ LAU that is,593

in M, true at u1 (so the c-edge to u1 is preserved) but false at u2 (so the c-edge to594

u2 is removed). However, this is impossible: u1 and u2 are collectively bisimilar to595

one another (both are dead-end states), and thus they cannot be distinguished by the596

language.597

3.4 Discussion598

This section has studied further the partial communication framework. Thus,599

it makes sense to argue for its use, contrasting the choices made with their600

alternatives.601

A first concern might be that, while communication between agents is a cru-602

cial form of interaction, it can be already modelled through public announce-603

ments (e.g., Ågotnes et al. 2010, van Ditmarsch 2014). Still, this strategy might604

not be fully suited. In such a setting, an announcement requires, in fact, two605

parameters: the announcement’s precondition and the information the agents606

receive. When the announcement comes from a ‘nameless’ external source, it607

is clear what these two parameters are, and they turn out to be the same: to be608

‘announced’, ξ must be true (the precondition), and the agents learn that ξ is609

the case (the information).12 But when the information comes from an agent,610

precondition and information content are not straightforward, and they might611

differ. When an agent i announces ξ, what is the precondition? There is an an-612

nouncer involved, so it cannot be only ξ. Is it enough that the announcer knows613

ξ (i.e., Ki ξ), or should she be introspective about it (i.e., KiKi ξ)? Analogously,614

what is what the other agents learn? Assuming they trust the announcer, they615

learn that ξ is true. Do they also learn that the announcer knows ξ (i.e., Ki ξ),616

or even that she knows that she knows ξ (i.e., KiKi ξ)?617

These questions naturally extend to situations of group communication.618

In group announcement logic (Ågotnes et al. 2010), an announcement from a619

group S is represented by the public announcement of
∧
i∈SKi ξi, a conjunction620

specifying a formula ξi known by each agent i. In other words, an announce-621

ment from a group S is modelled as a parallel action in which each agent i ∈ S622

announces a formula she knows. However, other readings may be more ap-623

propriate: the group might announce something that is common knowledge624

among its members, or even announce something they all know distributively.625

These alternative readings are more naturally represented by the actions intro-626

duced in Baltag (2010), Ågotnes and Wáng (2017), Baltag and Smets (2020), of627

which partial communication is just a (topic-oriented) variation.628

Then, in the partial communication setting, although only some of the agents629

share, this information is received by every agent. This ‘everybody hears’ set-630

12More precisely, they learn that ξ was the case at the moment of its announcement.
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ting is useful, e.g., for modelling classroom scenarios where (hopefully) every-631

body listens to what is being told, but only the lecturer and some adventurous632

students communicate. It can be also used for representing situations similar633

to public debates, where everybody ‘hears’ but only the appointed ones get to634

‘talk’. It can even be used when the communication channel is insecure, and635

thus privacy cannot be assumed. Of course, it is also interesting to look into636

more complex ‘private communication’ scenarios, such as those in which only637

some agents receive the shared information.13 Instead, this paper has rather638

focused on the strategic aspects that arise in competitive situations. In such639

cases, one naturally wonders whether there is a form of partial communication640

that can achieve a given goal (e.g., van Ditmarsch 2003). The arbitrary partial641

communication of Section 4 can help to answer such questions.642

4 Arbitrary partial communication643

The partial communication framework allows us to model inter-agent inform-644

ation exchange. Yet, consider competitive scenarios. While it is interesting to645

find out what a form of partial communication can achieve (fix the agents and646

the topic, then find the consequences), one might be also interested in deciding647

whether a given goal can be achieved by some form of partial communication648

(fix the goal: is there a group of agents and a topic that can achieve it?). This649

quantification over the sharing agents and the topic they discuss adds a strategic650

dimension to the framework. This is particularly useful when communica-651

tion occurs over an insecure channel, as one would like to know whether there652

is a form of partial communication (who talks, and on which topic) that can653

achieve a given goal (e.g., make something common knowledge for a group of654

agents, while also precluding adversaries/eavesdroppers from learning it, as in655

van Ditmarsch 2003). Thus, in the spirit of Balbiani et al. (2008), one can then656

quantify, either over the agents that communicate or over the topic they discuss.657

Quantifying over the communicating agents does not need additional ma-658

chinery: A is finite, so a modality stating that “φ is true after any group of agents659

share all their information aboutχ” is definable as [∗:χ]φ :=
∧
S⊆A [S:χ]φ (and thus,660

by defining ⟨∗:χ⟩φ := ¬ [∗:χ]¬φ, it follows that ⊩ ⟨∗:χ⟩φ ↔
∨
S⊆A ⟨S:χ⟩φ).661

Hence, in the rest of the section we focus on quantification over topics.662

4.1 Syntax, semantics, and model checking663

Definition 4.1 (Modality [S: ∗]) Define L∗PC[0] as L plus the quantifying mod-664

ality [S: ∗]. Then, define L∗PC[i+1] as the result of extending L∗PC[i] with an665

additional modality [S:χ] for S ⊆ A and χ ∈ L∗PC[i]. The language L∗PC is the666

union of allL∗PC[n] with n ∈N, thus essentially extendingLPC with a modality667

[S: ∗] for each group of agents S ⊆ A. The set of atoms and size for φ ∈ L∗PC668

extend Definition 3.2 with the clauses at([S: ∗]φ) := at(φ) and |[S: ∗]φ| := |φ|+ 1,669

respectively. For the semantic interpretation,670

(M,w) ⊩ [S: ∗]φ iffdef (M,w) ⊩ [S:χ]φ for every χ ∈ L

iff (MS:χ,w) ⊩ φ for every χ ∈ L.671

13The interested reader is referred, e.g., to the semi-private communication within groups of
Ågotnes and Wáng (2017) and the secret ‘hacking’ from Baltag and Smets (2020).
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AS: ∗: ⊢ [S: ∗]φ→ [S:χ]φ for every χ ∈ L

RS: ∗: If ⊢ η([S:χ]φ) for all χ ∈ L, then ⊢ η([S: ∗]φ)

Table 3: Axiom and rule of inference for the arbitrary case.

If one defines ⟨S: ∗⟩φ := ¬ [S: ∗]¬φ, then672

(M,w) ⊩ ⟨S: ∗⟩φ iffdef there is χ ∈ L such that (MS:χ,w) ⊩ φ. ◀673

Note how [S: ∗] quantifies over formulas inL, and not over formulas inL∗PC.674

As in Balbiani et al. (2008), this is to avoid circularity issues. One could have675

also chosen to quantify over formulas in LPC , but L ≈ LPC (see the paragraph676

on expressivity on Page 9) so nothing is lost by using L instead.14 Note also677

how, because of the way L∗PC is defined ([S: ∗] is added at the beginning and678

not at the end), the topic χ of a partial communication formula [S:χ]φ might679

contain arbitrary partial communication modalities (just as publicly announced680

formulas might contain arbitrary public announcement modalities in Balbiani681

et al. 2008).682

Axiom system. Axiomatising L∗PC requires an additional notion.683

Definition 4.2 (Necessity Forms) Given a symbol ♯ < P, the set of necessity
forms (Goldblatt 1982) is given by

η(♯) ::= ♯ | ϕ→ η(♯) | DG η(♯) | [S:χ] η(♯)

with ϕ an L∗PC-formula, χ an L-formula, and sets of agents S, G ⊆ A. In a684

necessity form η(♯), replacing ♯ with a L∗PC-formula ψ produces another L∗PC-685

formula, denoted as η(ψ). ◀686

The (note: infinitary) axiom system forL∗PC, similar to well-known axiomat-687

isations of other logics of quantified epistemic actions (see van Ditmarsch 2023688

for an overview), is given by the axioms and rules on Tables 1, 2 and 3. The689

axiom A[S: ∗] and the rule R[S: ∗] (Table 3) are the crucial ones for the modality690

for arbitrary partial communication, and their soundness follows from [S: ∗]’s691

semantic interpretation. The completeness of the whole system can be proved692

by combining and adapting techniques from Wáng and Ågotnes (2013) (to deal693

with distributed knowledge) and Balbiani and van Ditmarsch (2015) (to tackle694

the quantifying modalities).15
695

Theorem 8 The axioms and rules on Tables 1, 2 and 3 are sound and (together)696

complete for L∗PC.697

Proof. See the appendix. ■698

14Still, for languages with other types of group knowledge, adding a dynamic modality might
influence the expressive power. For more on this (in the context of common knowledge and
quantified announcements), the reader is referred to Galimullin and Ågotnes (2021) and Ågotnes
and Galimullin (2023).

15A relatively similar completeness proof, for a system with distributed knowledge and quanti-
fication over public announcements, is presented in Ågotnes et al. (2022).
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Structural equivalence. The quantifying modality [S: ∗] is also invariant under699

collective bisimilarity.700

Theorem 9 (⇄C impliesL∗
PC

-equivalence) Let (M,w) and (M′,w′) be two poin-701

ted models; take Q ⊆ P. If (M,w)⇄QC (M′,w′) then, for everyψ ∈ L∗PC with at(ψ) ⊆ Q,702

(M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ.703

Proof. As the proof of Theorem 4. For details, see the appendix. ■704

Expressivity. Even though the partial communication modality [S:χ] does not705

increase the expressivity of the basic languageL, the modality [S: ∗] makesLPC706

more expressive. The intuition for this is that the quantifying modality allows707

us to talk about formulas of arbitrary finite modal depth, as well as formulas708

containing atoms that do not appear explicitly in the formula. Using either of709

these features, one can derive a contradiction from the assumption that LPC710

and L∗PC are equally expressive.711

Theorem 10 The language L∗PC is strictly more expressive than LPC .712

Proof. (Sketch) This result can be proved as the analogous result for arbitrary713

public announcements (Balbiani et al. 2008, Proposition 3.13) and arbitrary714

group announcements (Ågotnes et al. 2022). Assume, towards a contradiction,715

that L∗PC and LPC are equally expressive. Then, given a formula in L∗PC, there716

is a logically equivalent formula in LPC . Now, this formula in LPC has only a717

finite number of atoms, and thus one can find an atom p that does not appear718

in it. However, [S: ∗] in L∗PC quantifies over any formula, and thus also over719

formulas including p. With this, one can build two models where this atom p720

plays a ‘distinguishing’ role. Then, using induction, it can be shown that the721

formula in LPC (without p) cannot tell the models apart, while the formula in722

L
∗

PC (where quantification ranges also over formulas with p) can. ■723

Model checking As it is shown below (Theorem 11), the complexity of the724

model checking problem for L∗PC is PSPACE-complete. This is in line with the725

PSPACE-completeness of many other logics of quantified information change,726

as arbitrary public announcements (Balbiani et al. 2008), group announcement727

logic (Ågotnes et al. 2010), coalition announcement logic (Alechina et al. 2021)728

and arbitrary arrow update logic (van Ditmarsch et al. 2017). However, the729

witness algorithm presented below has an interesting twist. Model checking730

algorithms for the aforementioned logics include a step of computing a bisimu-731

lation contraction of a model, after which the work continues on the contracted732

model. This is not possible here: a model and its collective bisimulation contrac-733

tion are not collectively bisimilar (Roelofsen 2005), so they might differ in some734

formulas’ truth-value. The algorithm below still computes bisimulation con-735

tractions, but uses them just to keep track of bisimilar worlds. The computation736

continues on the original non-contracted model.737

For the complexity result, the definition and fact below will be useful.738

Definition 4.3 (S-definable restrictions) Let (M,w) be a pointed model; take739

S ⊆ A. A model (N,w) is an S-definable restriction of (M,w) if and only if740

(N,w) = (MS:χ,w) for some χ ∈ L∗PC. ◀741
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Fact 5 Let (M,w) be a finite pointed model. Then there is a finite number of S-definable742

restrictions of (M,w). ■743

The PSPACE complexity of the model checking problem for L∗PC relies on744

an algorithm MC(M,w, φ) that returns true if and only if (M,w) ⊩ φ, and re-745

turns false if and only if (M,w) ⊮ φ. The main challenge is that modalities746

[S: ∗] quantify over an infinite number of formulas. However, for any given747

finite model M, there is only a finite number of possible S-definable model748

restrictions (Fact 5). The proof of the fact that the problem is PSPACE-hard749

uses the classic reduction from the satisfiability of QBF, which is known to be750

PSPACE-complete.751

Algorithm 2 An algorithm for model checking for L∗PC752

1: procedure MC(M,w, φ)753

2: case φ = [S:χ]ψ754

3: return MC(MS:χ,w, ψ)755756

4: case φ = [S: ∗]ψ757

5: Compute collective P-bisimulation contraction |M|C758

6: for all S-definable restrictions (N,w) of (M,w) do759

7: if MC(N,w, ψ) returns false then760

8: return false761762763

9: return true764765766

Theorem 11 The model checking for L∗PC is PSPACE-complete.767

Proof. (Sketch) Let (M,w) be a pointed model; take φ ∈ L∗PC. In Algorithm 2,768

Boolean cases and the case for DG are as expected, and thus omitted. The case769

for [S: ∗] relies on the construction of S-definable restrictions. The basic idea for770

that is to consider a subset of all possible bipartitions of (M,w), taking care that771

bisimilar worlds end up in the same partition. This can be done by checking772

that, for each world, if it is in a partition, then all worlds in the same collect-773

ive bisimulation equivalence class are also in the same partition. Collective774

bisimulation equivalence classes can be computed by, e.g., a modification of775

Kanellakis-Smolka algorithm (Kanellakis and Smolka 1990) that runs in poly-776

nomial time and takes into account not only individual relations but also their777

intersections. Having computed collective bisimulation equivalence classes of778

(M,w), one can construct an S-definable restriction of the model by taking a bi-779

partition such that if v belongs to one partition, then all u ∈ [v] also belong to the780

same partition, with [v] being a collective bisimulation equivalence class. For781

an argument that the algorithm is in PSPACE, as well as that it is PSPACE-hard,782

see the Appendix.783

4.2 Arbitrary partial communication vs. arbitrary public an-784

nouncements785

Subsection 3.2 showed that the languages of partial communication (LPC ) and786

public announcements (LPA ) are equally expressive. As this subsection shows,787

this changes when quantifying modalities are added (the arbitrary partial com-788

munication of this section vs the arbitrary public announcements of Balbiani789

et al. 2008). First, the definitions for arbitrary public announcements.790
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Definition 4.4 Define L∗PA[0] as L plus the quantifying modality [∗]. Then,791

define L∗PA[i+1] as the result of extending L∗PA[i] with an additional modality792

[ξ] for ξ ∈ L∗PA[i]. The language L∗PA is the union of all L∗PA[i] with i ∈ N, thus793

essentially extending LPA with a modality [∗]. The set of atoms for formulas794

in L∗PA is as in Definition 3.5 plus the clause at([∗]φ) := at(φ). For the semantic795

interpretation,796

(M,w) ⊩ [∗]φ iffdef (M,w) ⊩ [ξ]φ for every ξ ∈ L. 16
797

If one defines ⟨∗⟩φ := ¬ [∗]¬φ, then798

(M,w) ⊩ ⟨∗⟩φ iff there is ξ ∈ L such that (M,w) ⊩ ⟨ξ⟩φ. ◀799

The theorem below shows that L∗PA and L∗PC are incomparable with respect800

to expressive power (i.e.,L∗PC $ L
∗

PA andL∗PA $ L
∗

PC). This result is obtained by801

adapting techniques and models from Balbiani et al. (2008) and van Ditmarsch802

et al. (2017) to this partial communication case.803

Theorem 12 L∗PA and L∗PC are, expressivity-wise, incomparable.804

Proof. For showingL∗PC $ L
∗

PA, consider ⟨{a, b} : ∗⟩(Kb p∧¬KbKb p) inL∗PC. For805

a contradiction, assume there is an equivalent α ∈ L∗PA. Since α is finite there is806

an atom, say q, that does not occur in it. The strategy consists in building two807

collectively P\{q}-bisimilar pointed models and then argue that, while they can808

be distinguished by ⟨{a, b} : ∗⟩(Ka p ∧ ¬KaKa p), they cannot be distinguished809

by α. Consider, then, the (reflexive and symmetric) models below for A = {a, b}.810

pw ua

pw′1

p, qw′2

u′

a, b

a

a

M M′

811

Now, observe the following.812

• The formula ⟨{a, b} : ∗⟩(Ka p ∧ ¬KaKa p) in L∗PC can tell (M,w) and (M′,w′1)813

apart. On the one hand, it fails at (M,w): making Ka p ∧ ¬KaKa p true at w814

requires removing the symmetric a-edge between w and u (so Ka p holds),815

but this makes u inaccessible for a from w (thus ¬KaKa p fails). On the816

other hand, it holds at (M′,w′1): a ‘conversation’ among {a, b} about p ↔ q817

produces the desired result (Fact 2).818

• The q-less formula α inL∗PA, assumed to be logically equivalent to the distin-819

guishing ⟨{a, b} : ∗⟩(Ka p ∧ ¬KaKa p) in L∗PC, cannot tell (M,w) and (M′,w′1)820

apart. To show this, proceed by structural induction over α. The atomic,821

Boolean, epistemic and public announcement cases follow from Theorem 6822

and the fact that the pointed models are collectively P\{q}-bisimilar, witness823

the relation {(w,w′1), (w,w′2), (u,u′)}. For [∗] note that, for every announce-824

ment in one pointed model, there is a corresponding announcement in the825

other such that the resulting models remain collectively P\{q}-bisimilar. This826

16Note: L∗PA extends the language in Balbiani et al. (2008) with distributed knowledge modalities.
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is because, in both models, each world is uniquely defined by a Boolean for-827

mula containing only atoms p and q. Hence, the aforementioned collective828

P\{q}-bisimulation tells us how to mimic announcements. For example, if829

a formula ξ with ⟦ξ⟧M′ = {w′1,w
′

2} is announced on M′, one can use the830

characterising formulas for the collective P\{q}-bisimilar w to create, in M, a831

matching announcement.832

For showing L∗PA $ L
∗

PC, proceed in a similar fashion: consider ⟨∗⟩(Kb p ∧833

¬KbKb p) in L∗PA and assume there is an equivalent β ∈ L∗PC. Let q be an atom834

not occurring in β, and consider the (reflexive and symmetric) models below835

for A = {a, b, c}.836

pw1

p, qw2 u

b, ca, b, c

b, c

pw′1

p, qw′2

q u′1

u′2

b, c

a, b, c

b, c

M M′

837

Now, observe the following.838

• The formula ⟨∗⟩(Kb p ∧ ¬KbKb p) in L∗PA can tell (M,w1) and (M′,w′1) apart.839

On the one hand, it fails at (M,w1), as an announcement preserves transit-840

ivity. On the other hand, it holds at (M′,w′1): the announcement of q → p841

(equivalence classes highlighted) produces the desired result.842

• The q-less formula β inL∗PC, assumed to be logically equivalent to the distin-843

guishing ⟨∗⟩(Kb p ∧ ¬KbKb p) in L∗PA, cannot tell (M,w1) and (M′,w′1) apart.844

To show this, proceed by structural induction over β. The atomic, Boolean,845

epistemic and partial communication cases follow from Theorem 4 and the846

fact that the pointed models are collectively P\{q}-bisimilar, witness the re-847

lation {(w1,w′1), (w2,w′2), (u,u′1), (u,u′2)}. For ⟨S: ∗⟩ note that, for every partial848

communication in one pointed model, there is a corresponding partial com-849

munication in the other such that the resulting models remain collectively850

P\{q}-bisimilar. As in the previous case, this is because, in both models, each851

world is uniquely defined by a Boolean formula containing only atoms p852

and q. Hence, the aforementioned collective P\{q}-bisimulation tells us how853

to mimic partial communication. For example, if a set of agents S com-854

municate on M′ about a formula χ with ⟦χ⟧M′ = {w′1,u
′

1}, one can use the855

characterising formulas for the collective P\{q}-bisimilar w1 and u to create,856

in M, a matching topic for the same communicating agents. ■857

4.3 Arbitrary partial communication vs. arbitrary arrow up-858

dates859

Subsection 3.3 showed that the languages of partial communication (LPC )860

and arrow updates (LAU ) are equally expressive, relying on their reduction to861

the underlying epistemic logic. Similarly to the previous subsection, allowing862

quantification over arrow updates (van Ditmarsch et al. 2017) produces a logic863

that is incomparable to both L∗PA (van Ditmarsch et al. 2017, Theorem 1) and864

L
∗

PC (shown below).865
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Definition 4.5 Define L∗AU[0] as L plus the quantifying modality [∗U]. Then,866

define L∗AU[i+1] as the result of extending L∗AU[i] with an additional modality867

[U], where U is a finite list (ξ1, i1, χ1), . . . , (ξm, im, χm) with ξ j, χ j ∈ L
∗

AU[i] and868

i j ∈ A for 1 ⩽ j ⩽ m. The language L∗AU is the union of all L∗AU[n] with n ∈ N,869

thus essentially extending LAU with a modality [∗U]. The set of atoms for870

formulas in L∗AU is as in Definition 3.6 plus the clause at([∗U]φ) := at(φ). For871

the semantic interpretation,872

(M,w) ⊩ [∗U]φ iffdef (M,w) ⊩ [U]φ for every U ∈ LAU. 17
873

If one defines ⟨∗U⟩φ := ¬ [∗U]¬φ, then874

(M,w) ⊩ ⟨∗U⟩φ iff (M,w) ⊩ ⟨U⟩φ for some U ∈ LAU. ◀875

Similarly to Theorem 12, we can show that quantifying over partial commu-876

nication and quantifying over arrow updates are incomparable to each other.877

Below we present a proof sketch of this result.878

Theorem 13 L∗PC and L∗U are, expressivity-wise, incomparable.879

Proof. (Sketch) To see that L∗AU $ L
∗

PC, consider ⟨∗U⟩(Ka p ∧ K̂a K̂a ¬p). For a880

contradiction, assume there is an equivalent α ∈ L∗PC. Pick an atom q not881

occurring in α; then consider symmetric and reflexive models M and M′ below882

for A = {a}.883

pw ua

pw′1

p, qw′2

u′

a

a

a

M M′

884

Similarly to the first part of Theorem 12, models are collectively P\{q}-bisimilar,885

and, moreover, agent a, being the single agent in the system, does not have886

any communication available to her to cut any relations. At the same time,887

⟨∗U⟩(Ka p ∧ K̂a K̂a ¬p) does not hold in pointed model (M,w) due to the fact888

that the first conjunct requires cutting the a-edge from w to u, and the second889

conjunct requires preserving the very same edge. On the other hand, since890

each world of M′ can be uniquely defined by a Boolean formula (using atom891

q), we can construct an arrow update U that removes only the arrows between892

w′1 and u′ and preserves all other arrows. It is then straightforward to verify893

(MU,w′1) ⊩ Ka p ∧ K̂a K̂a ¬p, i.e. (M,w′1) ⊩ ⟨∗U⟩(Ka p ∧ K̂a K̂a ¬p).894

For proving L∗PC $ L
∗

AU, consider the models below.895

pw ua, b

pw1 u1

u2 p w2

a

b b

a

M M′

896

17Note: L∗AU extends the language in van Ditmarsch et al. (2017) with distributed knowledge
modalities.
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Now consider the formula ⟨{a, b} : ∗⟩D{a,b}⊥ in L∗PC. Assume that there is an897

equivalent formula α ∈ L∗AU; pick an atom p not occurring in it. It is clear that898

(M,w) ⊮ ⟨{a, b} : ∗⟩D{a,b}⊥, as none of a and b can tell apart w and u. However,899

(M′,w1) ⊩ ⟨{a, b} : ∗⟩D{a,b}⊥ (see the highlighted partitions).900

To see that α cannot distinguish (M,w) and (M′,w1), first notice that because901

quantification in [∗U] is implicit, one can use p in the arrow updates we quantify902

over. Thus, we can force any submodel of (M,w) using [∗U]. At the same time,903

the pairs of worlds (w1,w2) and (u1,u2) in M′ are collectively bisimilar. Thus, we904

cannot remove an a-edge from the upper part of the model without removing905

the corresponding edge in the lower part. The same happens with b-edges.906

This, together with the fact that M and M′ are collectively P\{p}-bisimilar (a907

witness is {(w,w1), (w,w2), (u,u1), (u,u2)}) implies that (M,w) ⊩ α if and only if908

(M′,w1) ⊩ α. ■909

5 Summary and further work910

The focus of this paper is the action of partial communication. Through it, a911

group of agents S share, with every agent in the model, all the information they912

have about the truth-value of a formula χ. Semantically, this is represented913

by an operation through which the uncertainty of each agent is reduced by914

removing the uncertainty about χ some agent in S has already ruled out. After915

having recalled the basics of the framework, we showed that its language916

LPC is invariant under collective bisimulation. Moreover, we investigated917

the complexity of its model checking problem, proving it is in P. It has been918

also shown that, while the expressivity of LPC is exactly that of the languages919

for public announcements and arrow updates (all are reducible to L), their920

update expressivity is different. Thus, all three types of communication are921

incomparable to each other. The focus has then shifted to a modal operator that922

quantifies over the topic of the communication: a setting for arbitrary partial923

communication. We have provided the operator’s semantic interpretation as924

well as a sound and complete axiom system and invariance results for the925

resulting languageL∗PC. We have also proved that the model checking problem926

for the new language L∗PC is PSPACE-complete, and also showed that L∗PC927

is, expressivity-wise, incomparable to both the language for arbitrary public928

announcements and the language for arbitrary arrow updates.929

The framework for partial communication provides, arguably, a natural930

representation of communication between agents. Indeed, it works directly931

with the information (i.e., uncertainty) the agents have, instead of looking for932

formulas that are known by the agents, and then using them as announcements933

(as done, e.g., when dealing with group announcements; Ågotnes et al. 2010).934

Additionally, the results show that this action is a truly novel epistemic action,935

different from others as public announcements and arrow updates.936

There is further work to do. In the current version of the setting, some ques-937

tions still demand an answer. An important one is that collective bisimulation938

is not ‘well-behaved’: a model and its collective bisimulation contraction are939

not collectively bisimilar (Roelofsen 2005). One then wonders whether there is940

a more adequate notion of structural equivalence for the basic language L and941

its extensions.942
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Taking into account that partial communication is incomparable, update943

expressivity wise, to both public announcements and arrow updates, it may944

be interesting to determine some special classes of pointed models where all945

three modalities are equivalent. Moreover, we believe that it is also worthwhile946

to compare partial communication to other model-changing actions, like, e.g.,947

those of relation-changing logics (Areces et al. 2015).948

Alternatively, one can expand the presented framework. For example, one949

can extend the languages used here by adding a common knowledge operator,950

a step that requires further technical tools (Ågotnes and Wáng 2017, Baltag951

and Smets 2020, Galimullin and Ågotnes 2021, Ågotnes and Galimullin 2023).952

Or, one can put further restrictions on communication, like costs and resource953

bounds (Dolgorukov and Gladyshev 2022, Dolgorukov et al. 2024).954

Equally interesting is a generalisation in which the topic of conversation955

is rather a set of formulas, together with its connection with other forms of956

communication (e.g., one in which some agents share all they know with every-957

body). Yet another exciting avenue of further research is to consider private or958

semi-private communication within groups of agents on a given topic.959

A Appendix960

Proof of Theorem 4961

Since LPC is the union of LPC[n] for all n ∈ N, the proof will proceed by962

induction on n. In fact, the manuscript will prove a stronger statement: for every963

ψ ∈ LPC with at(ψ) ⊆ Q and every (M,w) and (M′,w′): if (M,w) ⇄QC (M′,w′)964

then (1) (M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ, and (2) (MS:ψ,w) ⇄QC (M′
S:ψ,w

′).965

So, take M = ⟨W,R,V⟩ and M′ = ⟨W′,R′,V′⟩.966

Base case. Take ψ ∈ LPC[0] = Lwith at(ψ) ⊆ Q; suppose (M,w)⇄QC (M′,w′). In967

this case, Item (1) is nothing but Theorem 2. For Item (2), let Z be the witness968

for (M,w)⇄QC (M′,w′); it will be shown that Z is also a collective Q-bisimulation969

between MS:ψ = ⟨W,RS:ψ,V⟩ and M′
S:ψ = ⟨W

′,R′S:ψ,V′⟩. Take any (u,u′) ∈ Z.970

• Atoms. The operation does not change atomic valuations. Thus, since u971

and u′ agree in all atoms in Q in M and M′ (as Z satisfies atoms for those972

models), they also agree in such atoms in MS:ψ and M′
S:ψ.973

• Forth. Take any G ⊆ A and any v ∈W such that RS:ψGuv. Since RS:ψG = RG∪S∪974

(RG ∩∼M
ψ ) (see observation immediately after Definition 3.1), then RG∪Suv or975

(RG ∩ ∼M
ψ )uv. (i) If RG∪Suv then, since Z satisfies forth for M and M′, there is976

v′ ∈W′ such that R′G∪Su′v′ and (v, v′) ∈ Z. Since R′S:ψG = R′G∪S ∪ (R′G ∩∼M′
ψ ),977

from R′G∪Su′v′ it follows that R′S:ψGu′v′. Thus, this v′ ∈ W′ is such that978

R′S:ψGu′v′ and (v, v′) ∈ Z, as required. (ii) If (RG ∩ ∼M
ψ )uv, then both RGuv979

and u ∼M
ψ v. From the first and the fact that Z satisfies forth for M and M′,980

there is v′ ∈ W′ such that R′Gu′v′ and (v, v′) ∈ Z. Now, u ∼M
ψ v indicates981

that u and v agree on ψ’s truth-value. But ψ ∈ L. Thus, Item (1) from this982

base case indicates that u and u′ also agree on ψ (as (u,u′) ∈ Z), and so do v983

and v′ (from (v, v′) ∈ Z). Hence, u′ and v′ agree on ψ’s truth-value, that is,984
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u′ ∼M′
ψ v′. Therefore, (R′G ∩ ∼M′

ψ )uv, so R′S:ψGu′v′. This means this v′ ∈ W′ is985

such that R′S:ψGu′v′ and (v, v′) ∈ Z, as required.986

• Back. As in forth, using the fact that Z satisfies back for M and M′.987

Thus, MS:ψ ⇄
Q

C M′
S:ψ. But (w,w′) ∈ Z, so (MS:ψ,w)⇄QC (M′

S:ψ,w
′).988

Inductive case. Take ψ ∈ LPC[i+1] with at(ψ) ⊆ Q; suppose (M,w)⇄QC (M′,w′).989

For Item (1), proceed by structural induction onψ. The cases for atoms, Boolean990

operators and DG are as in Theorem 2. The remaining case is for formulas of991

the form [S:χ]φ with χ ∈ LPC[i], φ ∈ LPC[i+1] and at([S:χ]φ) = (at(χ) ∪992

at(φ)) ⊆ Q. Here, the structural IH (the one over formulas in LPC[i+1]) states993

that collectively Q-bisimilar pointed models agree on the truth value of the994

subformula φ (as at(φ) ⊆ Q). Then, note how, since χ ∈ LPC[i], at(χ) ⊆ Q and995

(M,w) ⇄QC (M′,w′), Item (2) of the (global) IH implies (MS:χ,w) ⇄QC (M′S:χ,w
′).996

Hence, (MS:χ,w) ⊩ φ if and only if (M′S:χ,w
′) ⊩ φ. Now, our case. From left to997

right, suppose (M,w) ⊩ [S:χ]φ. By semantic interpretation, (MS:χ,w) ⊩ φ; thus,998

(M′S:χ,w
′) ⊩ φ, i.e., (M′,w′) ⊩ [S:χ]φ. The right-to-left direction is analogous.999

It is only left to prove Item (2) for ψ ∈ LPC[i+1] with at(ψ) ⊆ Q. This can be1000

done as in the (global) base case, using Item (1) from this inductive case instead.1001

Proof of Proposition 11002

It will be shown that

Z := {(u,u) ∈ (W × ⟦ξ⟧M) | u ∈ ⟦ξ⟧M
},

is a collective bisimulation. To do so, take any (u,u) ∈ Z (so u ∈ ⟦ξ⟧M).1003

• Atoms. Immediate: both operations use the original atomic valuation.1004

• Forth. Take any G ⊆ A. Suppose there is v ∈ W such that RξGuv; it will be1005

shown that v satisfies the requirements. Since RξGuv, every i ∈ G is such that1006

Rξiuv, that is, Riuv and u ∼M
ξ v. The latter and u ∈ ⟦ξ⟧M imply v ∈ ⟦ξ⟧M;1007

thus, (v, v) ∈ Z and R′iuv. The now latter holds for every i ∈ G, which yields1008

the missing piece, R′Guv.1009

• Back. Take any G ⊆ A. Suppose there is v ∈ W such that R′Guv; it will be1010

shown that v satisfies the requirements. Since R′Guv, every i ∈ G is such that1011

R′iuv, that is, Riuv and {u, v} ⊆ ⟦ξ⟧M. The latter implies not only (v, v) ∈ Z1012

but also u ∼M
ξ v; then, Rξiuv. The now latter holds for every i ∈ G, which1013

yields the missing piece, RξGuv.1014

For the final detail, note how (w,w) ∈ Z (as w ∈ ⟦ξ⟧M).1015

Proof of Theorem 61016

Since LPA is the union of LPA[n] for all n ∈ N, the proof will proceed by1017

induction on n. In fact, a stronger statement will be proved: for every ψ ∈1018

LPA with at(ψ) ⊆ Q and every (M,w) and (M′,w′), if (M,w) ⇄QC (M′,w′) then1019

(1) (M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ, and (2) (Mψ,w) ⇄QC (M′ψ,w
′). Thus,1020

take M = ⟨W,R,V⟩ and M′ = ⟨W′,R′,V′⟩.1021
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Base case. Take ψ ∈ LPA[0] = Lwith at(ψ) ⊆ Q; suppose (M,w)⇄QC (M′,w′). In1022

this case, Item (1) is nothing but Theorem 2. For Item (2), let Z be the witness1023

for (M,w)⇄QC (M′,w′); it will be shown that Z is also a collective Q-bisimulation1024

between Mψ = ⟨W,Rψ,V⟩ and M′ψ = ⟨W
′,R′ψ,V′⟩. Take any (u,u′) ∈ Z.1025

• Atoms. The operation does not change atomic valuations. Thus, since u1026

and u′ agree in all atoms in Q in M and M′ (as Z satisfies atoms for those1027

models), they also agree in such atoms in Mψ and M′ψ.1028

• Forth. Take any G ⊆ A; suppose there is v ∈ W such that RψGuv. Since1029

RψG = RG ∩ ∼M
ψ , then RGuv and u ∼M

ψ v. From the former, (u,u′) ∈ Z and1030

Z satisfying forth for M and M′, there is v′ ∈ W′ such that R′Gu′v′ and1031

(v, v′) ∈ Z. Now, u ∼M
ψ v says that u and v agree on ψ’s truth-value. But1032

ψ ∈ L. Thus, Item (1) from this base case indicates that u and u′ also agree1033

on ψ (from (u,u′) ∈ Z), and so do v and v′ (from (v, v′) ∈ Z). Hence, u′ and1034

v′ agree on ψ’s truth-value, that is, u′ ∼M′
ψ v′. Thus, R′Gu′v′ and u′ ∼M′

ψ v′;1035

hence, R′ψGu′v′, as actually required.1036

• Back. As in forth, using the fact that Z satisfies back for M and M′.1037

Thus, Mψ ⇄
Q

C M′ψ. Moreover, (w,w′) ∈ Z; thus, (Mψ,w)⇄QC (M′ψ,w
′).1038

Inductive case. Take ψ ∈ LPA[i+1] with at(ψ) ⊆ Q; suppose (M,w)⇄QC (M′,w′).1039

For Item (1), proceed by structural induction onψ. The cases for atoms, Boolean1040

operators and DG are as in Theorem 2. The remaining case is for formulas of the1041

form [ξ]φwith ξ ∈ LPA[i],φ ∈ LPA[i+1] and at([ξ]φ) = (at(ξ)∪at(φ)) ⊆ Q. Now,1042

note how ξ ∈ LPA[i] and (M,w) ⇄QC (M′,w′) imply two facts. First, together1043

with Item (1) of the (global) IH, they imply (M,w) ⊩ ξ if and only if (M′,w′) ⊩ ξ.1044

Second, together with Item (2) of the same, they yield (Mξ,w) ⇄QC (M′ξ,w
′),1045

which together with the structural IH (collectively Q-bisimilar pointed models1046

agree on the truth value of subformulas of [ξ]φ containing only atoms in Q),1047

imply (Mξ,w) ⊩ φ if and only if (M′ξ,w
′) ⊩ φ (as at(φ) ⊆ Q). Now, our case.1048

From left to right, suppose (M,w) ⊩ [ξ]φ. By semantic interpretation, (M,w) ⊩ ξ1049

implies (Mξ,w) ⊩ φ; thus, (M′,w′) ⊩ ξ implies (M′ξ,w
′) ⊩ φ, i.e., (M′,w′) ⊩ [ξ]φ.1050

The right-to-left direction is analogous.1051

It is only left to prove Item (2) for ψ ∈ LPA[i+1] with at(ψ) ⊆ Q. This can be1052

done as in the (global) base case, using Item (1) from this inductive case instead.1053

Proof of Theorem 81054

Recall the additional axiom and rule,1055

AS: ∗: ⊢ [S: ∗]φ→ [S:χ]φ for every χ ∈ L,

RS: ∗: If ⊢ η([S:χ]φ) for all χ ∈ L, then ⊢ η([S: ∗]φ),
1056

as well as the syntax for necessity forms,

η(♯) ::= ♯ | ϕ→ η(♯) | DG η(♯) | [S:χ] η(♯).

Soundness1057

The soundness of axioms and rules on Tables 1 and 2 has been already es-1058

tablished (Theorem 1 and Theorem 3, respectively). For those in Table 3, the1059
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soundness of AS: ∗ follows directly from the semantic interpretation of [S: ∗]. For1060

RS: ∗, note first that the rule is truth-preserving. The proof of this fact relies1061

on the semantics of [S: ∗], proceeding in this case by induction over necessity1062

forms. Take any pointed model (M,w).1063

• Base case (η(♯) = ♯). Suppose (M,w) ⊩ [S:χ]φ holds for all χ ∈ L. Then, the1064

semantics of [S: ∗] imply (M,w) ⊩ [S: ∗]φ.1065

• Inductive case (η(♯) = ϕ → η(♯) with ϕ ∈ L∗PC). Suppose (M,w) ⊩ ϕ →1066

η([S:χ]φ) holds for all χ ∈ L; suppose further that (M,w) ⊩ ϕ. Then,1067

(M,w) ⊩ η([S:χ]φ) holds for all χ ∈ L and hence, by IH, (M,w) ⊩ η([S: ∗]φ).1068

Thus, (M,w) ⊩ ϕ→ η([S: ∗]φ).1069

• Inductive case (η(♯) = DG η(♯)). Suppose (M,w) ⊩ DG η([S:χ]φ) holds for1070

all χ ∈ L. By semantic interpretation, for all u ∈ W, if RGwu then (M,u) ⊩1071

η([S:χ]φ), for all χ ∈ L. Then, by IH, each such u is such that (M,u) ⊩1072

η([S: ∗]φ); thus, (M,w) ⊩ DG η([S: ∗]φ).1073

• Inductive case (η(♯) = [S:χ] η(♯)). Suppose (M,w) ⊩ [S′:χ′] η([S:χ]φ) holds1074

for all χ ∈ L. By semantic interpretation, (MS′:χ′ ,w) ⊩ η([S:χ]φ) holds1075

for all χ ∈ L. Then, by IH, (MS′:χ′ ,w) ⊩ η([S: ∗]φ) and therefore (M,w) ⊩1076

[S′:χ′] η([S: ∗]φ).1077

Since the rule is truth-preserving, it is also validity preserving, which completes1078

the proof.1079

Completeness1080

For completeness, the following complexity ordering will be useful.1081

Definition A.1 The Boolean, dynamic and quantifier depths of formulas in L∗PC1082

measure, respectively, the number of nested Boolean operators, communication1083

operators and quantifiers. They are given, respectively, by the functions δB, δ[]1084

and δ∀, defined recursively as1085

δB(p) := 1

δB(¬φ) := δB(φ) + 1

δB(φ ∧ ψ) := max(δB(φ), δB(ψ))

δB(DG φ) := δB(φ) + 1

δB([S:χ]φ) :=
(
8 + δB(χ)

)
δB(φ)

δB([S: ∗]φ) := δB(φ)

δ[](p) := 0

δ[](¬φ) := δ[](φ)

δ[](φ ∧ ψ) := max(δ[](φ), δ[](ψ))

δ[](DG φ) := δ[](φ)

δ[]([S:χ]φ) := δ[](χ) + δ[](φ) + 1

δ[]([S: ∗]φ) := δ[](φ)

δ∀(p) := 0

δ∀(¬φ) := δ∀(φ)

δ∀(φ ∧ ψ) := max(δ∀(φ), δ∀(ψ))

δ∀(DG φ) := δ∀(φ)

δ∀([S:χ]φ) := δ∀(χ) + δ∀(φ)

δ∀([S: ∗]φ) := δ∀(φ) + 1

1086

Then, use “
&

” for a natural-language disjunction (just as “&” stands for a
natural-language conjunction). The complexity ordering ≺ between two for-
mulas φ,ψ in L∗PC gives priority to the quantifier depth, then to the dynamic
depth and finally to the Boolean depth:

φ ≺ ψ iffdef

&
δ∀(φ) < δ∀(ψ),

δ∀(φ) = δ∀(ψ) & δ[](φ) < δ[](ψ),

δ∀(φ) = δ∀(ψ) & δ[](φ) = δ[](ψ) & δB(φ) < δB(ψ)


◀

The main ideas of this completeness proof come from the completeness1087

proofs for APAL (Balbiani and van Ditmarsch 2015) and epistemic logic with1088
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distributed knowledge (Fagin et al. 1992). These ideas will be adapted and1089

combined to prove the completeness of the stated proof system for L∗PC.1090

It is well-known that the intersection of relations is not modally definable;1091

hence one cannot build a canonical model straight away. The strategy is, in-1092

stead, to build an intermediate “pseudo-model”, where accessibility relations1093

labelled with G are taken as primitive. This pseudo-model can be then un-1094

wind into a tree-like model, and then one can show that these structures are1095

collectively bisimilar.1096

Definition A.2 A pseudo-model is a tuple M = ⟨W,R,V⟩where W and V are as in1097

a model (Definition 2.1), and R = {Ri ⊆W ×W | i ∈ A} ∪ {RG ⊆W ×W | G ⊆ A}1098

assigns a binary relation on W to each agent i ∈ A and also to every group of1099

agents G ⊆ A. Moreover, these relations are required to satisfy the following.1100

(i) R{i} = Ri, and1101

(ii) for all H, G ⊆ A, if H ⊆ G then RG ⊆ RH. ◀1102

The first difference between a model and a pseudo-model is that, while the1103

first only requires relations Ri for each i ∈ A (building the relations RG for G ⊆ A1104

using intersections), the second requires, additionally, relations for each G ⊆ A.1105

More importantly, even though the requirements in a pseudo-model guarantee1106

that RG ⊆
⋂
i∈GRi, the subset relation in the other direction might not hold: one1107

can have pairs that are in Ri for every i ∈ G without being in RG. This is the1108

main difference w.r.t. models where, by definition,
⋂
i∈G Ri = RG. In fact, while1109

every model is a pseudo-model, not every pseudo-model is a model. Still, note1110

how formulas in L∗PC can be interpreted in pseudo-models in the same way1111

they are semantically interpreted in models.1112

While the construction of the canonical model usually requires maximal1113

consistent sets of formulas, the strategy here uses the somewhat different max-1114

imal consistent theories. Recall that the derivation system under discussion1115

consists of the axioms and rules on Tables 1, 2 and 3.1116

Definition A.3 Let APC be the minimal set that contains all the instances of1117

the derivation system’s axiom schemata and is closed under all its rules. A set1118

x ⊆ L∗PC is called a theory if and only if (T1)APC ⊆ x, (T2) x is closed under MP1119

(Table 1) and (T3) x is closed under RS: ∗ (Table 3).1120

A theory x is consistent if and only if there is no φ ∈ L∗PC such that φ ∈ x1121

and ¬φ ∈ x. A theory x is maximal if and only if either φ ∈ x or ¬φ ∈ x for all1122

φ ∈ L∗PC. The smallest theory isAPC, and the largest theory is L∗PC. ◀1123

Note: while theories are required to be closed under MP and RS: ∗, they are1124

not required to be closed under the two other rules of the system, GD and RES:χ.1125

This is because, while MP and RS: ∗ preserve both validity and truth, GD and1126

RES:χ rules preserve validity but not truth.1127

The following theories will be of great help during the proof.1128

Lemma 1 Let x be a theory; take φ, χ ∈ L∗PC. Then, all of the following are theories.1129
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(i) φ→ x :=
{
ξ | φ→ ξ ∈ x

}
,1130

(ii) DG x := {ξ | DG ξ ∈ x},1131

(iii) [S:χ] x := {ξ | [S:χ] ξ ∈ x}1132

Proof.1133

(i) (T1) Take any ξ ∈ APC. By propositional reasoning, ϕ→ ξ ∈ APC for any1134

ϕ ∈ L∗PC; in particular, φ→ ξ ∈ APC. Since x is a theory,APC ⊆ x, so1135

φ→ ξ ∈ x. Hence, by definition, ξ ∈ φ→ x.1136

(T2) Take ϕ → ξ and ϕ in φ → x; then, φ → (ϕ → ξ) and φ → ϕ are in x.1137

Being a propositional validity,
(
φ→ (ϕ→ ξ)

)
→

(
(φ→ ϕ)→ (φ→ ξ)

)
1138

is inAPC, and thus it is also in x (as x is a theory). But, being a theory,1139

x is closed under MP, so (φ → ϕ) → (φ → ξ) is in x, and thus so is1140

φ→ ξ. Hence, by definition, ξ ∈ φ→ x.1141

(T3) Suppose η([S:χ]ψ) ∈ φ → x for every χ ∈ L; then, φ → η([S:χ]ψ) ∈ x1142

for every χ ∈ L. Being a theory, x is closed under RS: ∗; moreover,1143

φ → η(♯) is a necessity form. Hence, φ → η([S: ∗]ψ) ∈ x and thus, by1144

definition, η([S: ∗]ψ) ∈ φ→ x.1145

(ii) (T1) Take any ξ ∈ APC. From GD it follows that DG ξ ∈ APC; but x is a1146

theory, soAPC ⊆ x and hence DG ξ ∈ x. Thus, by definition, ξ ∈ DG x.1147

(T2) Take ϕ → ξ and ϕ in DG x; then, DG(ϕ → ξ) and DG ϕ are in x. From1148

axiom KD we have DG(ϕ → ξ) → (DG ϕ → DG ξ) ∈ APC and thus1149

DG(ϕ → ξ) → (DG ϕ → DG ξ) ∈ x. But, being a theory, x is closed1150

under MP, so DG ϕ→ DG ξ ∈ x and then DG ξ ∈ x. Hence, by definition1151

ξ ∈ DG x.1152

(T3) Suppose η([S:χ]φ) ∈ DG x for every χ ∈ L; then, DG η([S:χ]φ) ∈ x for1153

every χ ∈ L. Being a theory, x is closed under RS: ∗; moreover, DG η(♯)1154

is a necessity form. Hence, DG η([S: ∗]φ) ∈ x and thus, by definition,1155

η([S: ∗]φ) ∈ DG x.1156

(iii) (T1) Take any ξ ∈ APC. The rule1157

if ⊢ ϕ then ⊢ [S:χ]ϕ1158

is derivable in the system for any S and χ,18 so [S:χ] ξ ∈ APC. But1159

x is a theory, so APC ⊆ x and hence [S:χ] ξ ∈ x. Thus, by definition,1160

ξ ∈ [S:χ] x.1161

(T2) Take ϕ → ξ and ϕ in [S:χ] x. Then, both [S:χ](ϕ → ξ) and [S:χ]ϕ are1162

in x. The axiom1163

⊢ [S:χ](ϕ→ ξ)→ ([S:χ]ϕ→ [S:χ] ξ)1164

18Suppose ⊢ ϕ. From ⊢ ¬(¬p∧ p), propositional reasoning yields ⊢ ϕ↔ ¬(¬p∧ p) for any atom p.
Then, RE

S:χ produces the first piece, ⊢ [S:χ]ϕ↔ [S:χ]¬(¬p ∧ p). For the second piece, axiom A¬
S:χ

yields ⊢ [S:χ]¬(¬p∧p)↔ ¬ [S:χ](¬p∧p) and axiom A∧
S:χ yields ⊢ [S:χ](¬p∧p)↔ ([S:χ]¬p∧[S:χ] p),

so ⊢ ¬ [S:χ](¬p ∧ p) ↔ ¬([S:χ]¬p ∧ [S:χ] p). From those two, propositional reasoning yields
⊢ [S:χ]¬(¬p ∧ p) ↔ ¬([S:χ]¬p ∧ [S:χ] p). For the third piece, axiom A¬

S:χ yields ⊢ [S:χ]¬p ↔
¬ [S:χ] p. Then, propositional reasoning produces ⊢ ([S:χ]¬p ∧ [S:χ] p) ↔ (¬ [S:χ] p ∧ [S:χ] p),
from which ⊢ ¬([S:χ]¬p ∧ [S:χ] p) ↔ ¬(¬ [S:χ] p ∧ [S:χ] p) follows. From the three pieces and
propositional reasoning, one gets ⊢ [S:χ]ϕ↔ ¬(¬ [S:χ] p ∧ [S:χ] p). But the right-hand side of this
equivalence is a tautology. Then, by propositional reasoning, ⊢ [S:χ]ϕ.
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is derivable in the system,19 so it is in APC and thus also in x. But,1165

being a theory, x is closed under MP, so [S:χ]ϕ→ [S:χ] ξ ∈ x and then1166

[S:χ] ξ ∈ x. Hence, by definition ξ ∈ [S:χ] x.1167

(T3) Supposeη([S′:χ′]φ) ∈ [S:χ] x for everyχ′ ∈ L; then, [S:χ] η([S′:χ′]ψ) ∈1168

x for every χ′ ∈ L. Being a theory, x is closed under RS: ∗; moreover,1169

[S:χ] η(♯) is a necessity form. Hence, [S:χ] η([S′: ∗]φ) ∈ x and thus, by1170

definition, η([S′: ∗]φ) ∈ [S:χ] x. ■1171

Here are two further useful properties of theories that can be proven simil-1172

arly to, e.g., Lemma 8 and Proposition 15 of Galimullin 2021.1173

Lemma 2 If x is a theory, then φ ∈ φ→ x and x ⊆ φ→ x. ■1174

Lemma 3 Let φ be a formula and x be a theory. Then φ→ x is consistent if and only1175

if ¬φ < x. ■1176

Theories share some properties with maximal consistent sets.1177

Lemma 4 Every consistent theory can be extended to a maximal consistent one.1178

Proof. Let x be a consistent theory; let
{
ψ0, ψ1, . . .

}
be an enumeration of the1179

L
∗

PC-formulas. The maximal consistent theory y is built inductively. First, take1180

y0 := x. Then, given a consistent theory yn satisfying x ⊆ yn, consider the nth1181

formula of the enumeration, ψn.1182

• If ¬ψn < yn, then define yn+1 := ψn → yn.1183

• If ¬ψn ∈ yn, consider two cases.1184

– if ¬ψn is not of the form ¬η([S: ∗]φ), then define yn+1 := yn.1185

– if ¬ψn is of the form ¬η([S: ∗]φ), then define yn+1 := ¬η([S:χ]φ) → yn,1186

with ¬η([S:χ]φ) being the first formula in the enumeration that is not in1187

yn.1188

From its definition, yn+1 is a theory such that yn ⊆ yn+1 (Lemma 2). From its1189

construction and Lemma 3, it is consistent.1190

Now, take y :=
⋃

n∈N yn. Its consistency follows from the consistency of all1191

yn. Moreover: it is a theory as it satisfies (T1) , (T2) and (T3) . The first follows1192

because x ⊆ y and x is a theory. The second is straightforward. For the third,1193

consider its two cases.1194

• If ¬η([S: ∗]φ) < yn, then η([S: ∗]φ) ∈ yn+1 and therefore η([S: ∗]φ) ∈ y. But1195

APC ⊂ y so, by axiom AS: ∗ and closure under MP, it follows that η([S:χ]φ) ∈1196

y for all χ ∈ L.1197

• If ¬η([S: ∗]φ) ∈ yn then, by construction, there is a χ such that ¬η([S:χ]φ) ∈1198

yn+1. so ¬η([S:χ]φ) ∈ y. Then, by y’s consistency, η([S:χ]φ) < y.1199

19In fact, the equivalence is derivable. By propositional reasoning, ⊢ (φ → ψ) ↔ ¬(φ ∧ ¬ψ),
so rule RE

S:χ yields ⊢ [S:χ](φ → ψ) ↔ [S:χ]¬(φ ∧ ¬ψ). From axiom A¬
S:χ one gets ⊢ [S:χ]¬(φ ∧

¬ψ) ↔ ¬ [S:χ](φ ∧ ¬ψ). From axiom A∧
S:χ one gets ⊢ [S:χ](φ ∧ ¬ψ) ↔ ([S:χ]φ ∧ [S:χ]¬ψ) and

thus, by propositional reasoning, ⊢ ¬ [S:χ](φ ∧ ¬ψ) ↔ ¬([S:χ]φ ∧ [S:χ]¬ψ). Axiom A¬
S:χ also

produces ⊢ [S:χ]¬ψ↔ ¬ [S:χ]ψ, which via propositional reasoning can be turned into ⊢ ([S:χ]φ∧
[S:χ]¬ψ) ↔ ([S:χ]φ ∧ ¬ [S:χ]ψ) and then into ⊢ ¬([S:χ]φ ∧ [S:χ]¬ψ) ↔ ¬([S:χ]φ ∧ ¬ [S:χ]ψ).
Finally, propositional reasoning also produces ⊢ ¬([S:χ]φ∧¬ [S:χ]ψ)↔ ([S:χ]φ→ [S:χ]ψ). From
the five pieces and propositional reasoning, one gets ⊢ [S:χ](φ→ ψ)↔ ([S:χ]φ→ [S:χ]ψ).
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It is only left to show that y is maximal. Take any ψn in the enumeration.1200

If ¬ψn < yn then, by construction, ψn ∈ yn+1 (Lemma 2) and thus ψn ∈ y.1201

Otherwise, ¬ψn ∈ yn so ¬ψn ∈ y. ■1202

One can now define the canonical pseudo-model.1203

Definition A.4 The canonical pseudo-modelM is the tuple ⟨W,R,V⟩where1204

W :=
{
x | x is a maximal consistent theory

}
,

RG :=
{
(x, y) ⊆W ×W | DH x ⊆ y for all ∅ ⊂ H ⊆ G

}
,

V(p) :=
{
x ∈W | p ∈ x

}
. ◀1205

The following lemma plays the role of the existence lemma.1206

Lemma 5 Let x be a theory. If DG φ < x, then there is a maximal consistent theory y1207

such that DG x ⊆ y and φ < y.1208

Proof. Suppose DG φ < x. By definition, φ < DG x, so ¬φ → DG x is a consistent1209

theory (Lemma 3); by Lemma 4, it can be extended into a maximal consistent1210

theory y containing ¬φ. Then, from its consistency, y does not contain φ. ■1211

Finally, the truth lemma.1212

Lemma 6 For every ϕ ∈ L∗PC and every maximal consistent theory x,

(M, x) ⊩ ϕ if and only if ϕ ∈ x

Proof. The proof proceeds by structural induction on ϕ.1213

• Base case p. By the definition of the valuation, as x ∈ V(p) iff p ∈ x.1214

For the inductive cases, the IH states that (M, x) ⊩ ψ iff ψ ∈ x holds for all1215

maximal consistent theories x and formulas ψ such that ψ ≺ ϕ.1216

• Inductive cases ¬φ, φ ∧ ψ. Straightforward.1217

• Inductive case DG φ. (⇒) For a contraposition argument, suppose DG φ < x.1218

Then, by Lemma 5, there is a y ∈W such that both DG x ⊆ y and φ < y. By1219

the definition of RG and IH, this means that there is a y ∈W such that both1220

RGxy and (M, y) ⊮ φ. Therefore, by semantic interpretation, (M, x) ⊮ DG φ.1221

(⇐) Suppose DG φ ∈ x; take any y ∈ W such that RGxy. From DG φ ∈ x it1222

follows that φ ∈ DG x; from RGxy it follows that DG x ⊆ y. From these two1223

pieces, φ ∈ y; thus, by IH, (M, y) ⊩ φ. So, every y ∈ W with RGxy is such1224

that (M, y) ⊩ φ; hence, (M, x) ⊩ DG φ.1225

• Inductive cases [S:χ] p, [S:χ]¬φ, [S:χ](φ∧ψ), [S:χ] DG φ and [S:χ] [S′:χ′]φ.1226

They are all handled using the axioms and rule in Table 2 (see Velázquez-1227

Quesada 2022 for a similar proof detailing how they are used). Here, just1228

the case for [S:χ] DG φ is (briefly) discussed. From the soundness of axiom1229

AD
S:χ, it follows that (M, x) ⊩ [S:χ] DG φ if and only if (M, x) ⊩ DS∪G [S:χ]φ ∧1230

Dχ
G

[S:χ]φ. But the complexity among the formulas inside the scope of1231

[S:χ] has decreased, so DS∪G [S:χ]φ ∧ Dχ
G

[S:χ]φ ≺ [S:χ] DG φ; thus, by IH,1232

DS∪G [S:χ]φ ∧ Dχ
G

[S:χ]φ ∈ x. Now, x is a theory, so it contains APC and1233

thus, in particular, it contains (all instances of) axiom AD
S:χ and is closed1234

under MP. Hence, DS∪G [S:χ]φ∧Dχ
G

[S:χ]φ ∈ x if and only if [S:χ] DG φ ∈ x.1235
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• Inductive case [S:χ] [S′: ∗]φ. (⇒) Suppose (M, x) ⊩ [S:χ] [S′: ∗]φ, so (M, x) ⊩1236

[S:χ] [S′:χ′]φ for all χ′ ∈ L. But [S:χ] [S′:χ′]φ ≺ [S:χ] [S′: ∗]φ; hence, from1237

IH, it follows that [S:χ] [S′:χ′]φ ∈ x, for all χ′ ∈ L. Now, [S:χ] η(♯) is a1238

necessity form; since x is closed under rule RS: ∗, it follows that [S:χ] [S′: ∗]φ ∈1239

x. (⇐) Suppose [S:χ] [S′: ∗]φ ∈ x. Since x is a theory, [S:χ] [S′:χ′]φ ∈ x,1240

for all χ′ ∈ L. Once again, [S:χ] [S′:χ′]φ ≺ [S:χ] [S′: ∗]φ, so from IH it1241

follows that (M, x) ⊩ [S:χ] [S′:χ′]φ holds for all χ′ ∈ L, that is, (MS:χ, x) ⊩1242

[S′:χ′]φ holds for all χ′ ∈ L. By semantic interpretation, this is equivalent1243

to (MS:χ, x) ⊩ [S′: ∗]φ, and thus to (M, x) ⊩ [S:χ] [S′: ∗]φ.1244

• Inductive case [S: ∗]φ. (⇒) Suppose (M, x) ⊩ [S: ∗]φ. Then, (M, x) ⊩ [S:χ]φ1245

for all χ ∈ L. But [S:χ]φ ≺ [S: ∗]φ so, from IH, [S:χ]φ ∈ x for all χ ∈ L.1246

Since x is closed under rule RS: ∗, it follows that [S′: ∗]φ ∈ x. (⇐) Suppose1247

[S′: ∗]φ ∈ x. From axiom AS: ∗ and x’s closure under MP we have [S:χ]φ ∈ x1248

for all χ ∈ L. But [S:χ]φ ≺ [S: ∗]φ so, from IH, (M, x) ⊩ [S:χ]φ for all χ ∈ L.1249

Thus, (M, x) ⊩ [S: ∗]φ. ■1250

With the canonical pseudo-modelM satisfying this truth lemma, the final1251

stage of the proof consists in creating a collectively bisimilar structure (so it1252

agrees with M in the satisfiability of formulas in L∗PC) that is, additionally, a1253

model. The new structure is a tree-like model M obtained by unravelling M1254

around every world in its domainW. As a result, M has a forest structure with1255

no unique root.1256

Definition A.5 The tree-like canonical model M is the tuple ⟨W, R, V⟩where1257

• W is the set of all finite paths x = ⟨x0·G1·x1· . . . ·Gn·xn⟩ such that xk is inW for1258

every [0 ..n] andRGk+1 xkxk+1 for every k ∈ [0 ..n− 1]. The last world in a path1259

x is denoted as last(x).1260

• R = {Ri ⊆ W × W | i ∈ A} with Ri := {(x, y) | y = ⟨x·G· last(y)⟩ and i ∈ G}. Write1261

RG for
⋂
i∈G Ri.1262

• For all p ∈ P, V(p) :=
{
x ∈ W | p ∈ last(x)

}
. ◀1263

Note how M is a model. More importantly: concerning the satisfiability of1264

formulas in L∗PC, it is just as M. Since every model is a pseudo-model, the1265

following lemma will treat M andM as pseudo-models.1266

Lemma 7 The structures M = ⟨W, R, V⟩ andM = ⟨W,R,V⟩ are collectively bisimilar.1267

Proof. Define the following relation, connecting each theory x ∈W with every
path in Wwhose last world is x:

Z = {(x, x) | x = last(x)} .

To show that Z is a collective bisimulation, take any (x, x) ∈ Z.1268

• Atoms. For every atom p we have x ∈ V(p) iff p ∈ x (definition of V) iff1269

p ∈ last(x) (as x = last(x), by definition of Z) iff x ∈ V(p) (definition of V).1270

• Forth. Take any G ⊆ A and any y ∈W such that RGxy. Because of x = last(x)1271

and RGxy, the path x can be extended into the path y =
〈
x·G·y

〉
; since y is1272

the last world in this path, we actually have y = ⟨x·G· last(y)⟩. From the1273

definition of R, it follows that RGxy. Finally, we have y = last(y), so (y, y) ∈ Z.1274
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• Back. Take any G ⊆ A and any y ∈ W such that RGxy. From the definition of1275

R, it follows that y =
〈
x·G·y

〉
for some world y. Then, by the definition of a1276

path, RG last(x)y. Finally, it is clear that y = last(y), so (y, y) ∈ Z.1277

It is only left to show that Z is non-empty, for which it is enough to notice1278

that every theory x ∈ W has a matching path x = ⟨x⟩, which clearly satisfies1279

last(x) = x. ■1280

Finally, for completeness, one argues that every valid formula is derivable1281

in the system, which is equivalent to saying that every valid formula is inAPC.1282

Theorem 14 Every valid formula in L∗PC is inAPC.1283

Proof. For a contradiction, suppose there is a valid φ such that φ < APC. Build1284

the theory ¬φ → APC which, by Lemma 3, is consistent and, by Lemma 2,1285

contains ¬φ. Then, by Lemma 4, ¬φ → APC can be extended into a maximal1286

consistent theory x such that ¬φ → APC ⊆ x. Moreover: since x is consistent1287

and it contains ¬φ, we have φ < x. But then, (M, x) ⊮ φ (by Lemma 6) and thus1288

(M, ⟨x⟩) ⊮ φ (from Lemma 7 and Theorem 9). Hence, φ is false in some model,1289

contradicting the fact that it is valid. ■1290

Proof of Theorem 91291

SinceL∗PC is the union ofL∗PC[n] for all n ∈N, proceed again by induction on n1292

(as in the proof of Theorem 4). Again, one proves a stronger statement: for every1293

ψ ∈ L∗PC with at(ψ) ⊆ Q and every (M,w) and (M′,w′), if (M,w) ⇄QC (M′,w′)1294

then (1) (M,w) ⊩ ψ if and only if (M′,w′) ⊩ ψ, and (2) (MS:ψ,w) ⇄QC (M′
S:ψ,w

′).1295

Thus, take M = ⟨W,R,V⟩ and M′ = ⟨W′,R′,V′⟩.1296

Base case. This base case is for formulas inL∗PC[0], defined as the basic language1297

L plus the modality [S: ∗]. For Item (1), proceed by structural induction. The1298

cases for formulas in L (atoms, Boolean operators and DG) are covered by1299

Theorem 2. For the remaining case, take [S: ∗]φ with φ ∈ L and at([S: ∗]φ) =1300

at(φ) ⊆ Q; suppose (M,w) ⇄QC (M′,w′). From left to right, if (M,w) ⊩ [S: ∗]φ1301

then, by semantic interpretation, (MS:χ,w) ⊩ φ holds for every χ ∈ L. But from1302

(M,w) ⇄QC (M′,w′) and the fact each χ is in L, it follows that (MS:χ,w) ⇄QC1303

(M′S:χ,w
′) for every χ ∈ L (essentially Item (2) in the base case of the proof1304

of Theorem 4, as the proof also works for any χ, regardless of the atoms it1305

contains). Then, from IH and at(φ) ⊆ Q, it follows that (M′S:χ,w
′) ⊩ φ for every1306

χ ∈ L; hence, (M′,w′) ⊩ [S: ∗]φ. The right-to-left direction is analogous. For1307

Item (2), proceed as in the same case in the proof of Theorem 4, using now the1308

just proved Item (1) for formulas in L∗PC[0].1309

Inductive case. As in the same case in the proof of Theorem 4.1310

Proof of Theorem 111311

Constructing restrictions takes polynomial time (due to polynomial time con-1312

struction of the bisimulation contraction; see, e.g., Kanellakis and Smolka 1990)1313

and thus polynomial space. The space required for the [S:χ]ψ case is bounded1314

by O(|φ| · |M|). For the [S: ∗]ψ case, collective bisimulation contraction can be1315
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computed in polynomial time and space, and each restriction has a size of at1316

most |M|. If one traverses a given formula depth-first and reuses memory, the1317

space to store model restrictions is polynomial in |φ| (even though the algorithm1318

itself runs in exponential time). Thus, the space required for the case of [S: ∗]ψ1319

is bounded by O(|φ| · |M|). Finally, since computing each subformula of φ re-1320

quires space bounded byO(|φ| · |M|), the space required by the whole algorithm1321

is bounded by O(|φ|2 · |M|). The algorithm follows closely the semantics ofL∗PC,1322

and correctness can be shown via induction on φ. For the case of quantifiers1323

note that, to switch from bipartitions to particular formulas corresponding to1324

those partitions, one can use characteristic formulas (van Ditmarsch et al. 2014),1325

which are built in such a way that they are true only in one world of a model1326

(up to collective bisimilarity).1327

To show that the model checking problem is PSPACE-hard, use the classic1328

reduction from the satisfiability of QBF. Without loss of generality, consider1329

QBFs without free variables in which every variable is quantified only once.1330

Consider a QBF with n variables {x1, . . . , xn}. We need a formula in L∗PC and1331

a model with the size of both being polynomial on the size of the QBF. The1332

(reflexive and symmetric) model Mn below satisfies this: w0 is the evaluation1333

point, and for each variable xi there are two worlds, w1
i and w0

i , corresponding1334

respectively to evaluating xi to 1 and to 0. Assume that each w1
i satisfies only pi1335

and each w0
i satisfies only qi. Observe that Rb is just the identity.1336

w0

p1w1
1

q1w0
1

. . . pnw1
n qnw0

n

a a . . . a

a

1337

Let Ψ := Q1x1 . . .QnxnΦ(x1, . . . , xn) be a quantified Boolean formula (so Qi ∈

{∀,∃} and Φ(x1, . . . , xn) is Boolean). The formula chosenk below indicates, intu-
itively, that the values (either 1 or 0) of the first k variables have been chosen
(thus, for 1 ⩽ i ⩽ k, exactly one world in {w1

i ,w
0
i } can be accessed from w).

chosenk :=
∧

1⩽i⩽k

(K̂a pi ↔ ¬ K̂a qi) ∧
∧

k<i⩽n

(K̂a pi ∧ K̂a qi).

Here is, then, a recursive translation fromΨ to a formula ψ in L∗PC:

ψ0 := Φ(K̂a p1, . . . , K̂a pn),

ψk :=

 [{a, b} : ∗](chosenk → ψk−1) if Qk = ∀

⟨{a, b} : ∗⟩(chosenk ∧ ψk−1) if Qk = ∃
,

ψ := ψn.

Now, we need to show that1338

Q1x1 . . .QnxnΦ(x1, . . . , xn) is satisfiable if and only if (Mn,w0) ⊩ ψ.1339

For this, observe that each world in Mn can be characterised by a unique1340

formula. Moreover, relation b is the identity. Therefore, [{a, b} : ∗] and ⟨{a, b} : ∗⟩1341

can force any restriction of the a-edges from w0 to wi’s. In the model, worlds1342
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w1
i and w0

i correspond to the truth-value of xi. The guard chosenk guarantees1343

that only the truth-values of the first k variables have been chosen, and that1344

they have been chosen unambiguously (i.e. there is exactly one edge from w01345

to either w1
i and w0

i ). Thus, together with [{a, b} : ∗] and ⟨{a, b} : ∗⟩, the guards1346

chosenk emulate ∀ and ∃. Then, once the values of all xi’s have been set, the1347

evaluation of the QBF corresponds to the a-reachability of the corresponding1348

worlds in Mn.1349
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