
Coalition Logic for
Modelling and Verification

of Smart Contract Upgrades
Rustam Galimullin1 and Thomas Ågotnes1,2

{rustam.galimullin, thomas.agotnes}@uib.no

 1: University of Bergen, Norway

2: Southwest University, China

Atomic swap

Adapted from [van der Meyden, 2018]

• A smart contract is a program deployed on a blockchain

• Atomic swap smart contract allows two agents to swap
their assets without trusting each other

At the start, Alice and Bob hold their assets: has(A,a) and has(B,b)

Alice Bob
Smart contract

Atomic swap

Adapted from [van der Meyden, 2018]

• A smart contract is a program deployed on a blockchain

• Atomic swap smart contract allows two agents to swap
their assets without trusting each other

Alice Bob

Then Alice and Bob deposit, simultaneously or one after another,
their assets at the smart contract: dep(A,a) and dep(B,b)

Smart contract

Atomic swap

Adapted from [van der Meyden, 2018]

• A smart contract is a program deployed on a blockchain

• Atomic swap smart contract allows two agents to swap
their assets without trusting each other

Alice Bob

Then Alice and Bob deposit, simultaneously or one after another,
their assets at the smart contract: dep(A,a) and dep(B,b)

Smart contract

Atomic swap

Adapted from [van der Meyden, 2018]

• A smart contract is a program deployed on a blockchain

• Atomic swap smart contract allows two agents to swap
their assets without trusting each other

Alice Bob

Finally, if (at least) one of the agents wants to finalise the swap,
each one receives the asset of their partner

Smart contract

Atomic swap

Adapted from [van der Meyden, 2018]

• A smart contract is a program deployed on a blockchain

• Atomic swap smart contract allows two agents to swap
their assets without trusting each other

Alice Bob

Finally, if (at least) one of the agents wants to finalise the swap,
each one receives the asset of their partner

Smart contract

Coalition logic

• Coalition logic (CL) [Pauly, 2002] is used to reason about
abilities of groups of agents in the presence of opponents

• Language of CL:

• is read as ‘coalition can bring about by a joint
action no matter what agents outside of the coalition do.’

• Dual is read as ‘coalition cannot avoid ’

φ ::= p |¬φ | (φ ∧ φ) |⟨⟨C⟩⟩φ

⟨⟨C⟩⟩φ C φ

[[C]]φ C φ

Atomic swap

(M, s) ⊧ ¬dep(A, a) ∧ ¬dep(B, b)
(M, s) ⊧ ⟨⟨A⟩⟩dep(A, a)

M

⟨rec, wait⟩

s
has(A, a)
has(B, b)

t
dep(A, a)
has(B, b)

u
has(A, a)
dep(B, b)

v
dep(A, a)
dep(B, b)

w
has(A, b)
has(B, a)

⟨rec, rec⟩

⟨wait, rec⟩

⟨wait, rec⟩

⟨wait, wait⟩

⟨rec, wait⟩

⟨wait, wait⟩

⟨wait, wait⟩

⟨wait, wait⟩

⟨ fin, wait⟩

⟨wait, fin⟩

⟨ fin, fin⟩

Upgrades of smart
contracts

• Models of CL can capture some properties of smart
contracts

• CL, however, cannot capture upgrades of such contracts

• Moreover, once an upgrade is deployed on a blockchain
(an old version of) smart contract may still be available

• Thus, we propose using dynamic coalition logic (DCL)

M1 M2 M3 M4

Update 1 Update 2 Update 3

We use a recently introduced dictatorial DCL (DDCL) that allows
granting agents dictatorial powers in certain states

Atomic swap upgraded

Adapted from [van der Meyden, 2018]

• Assume that we want to upgrade atomic swap in the
following way

• Any agent can cancel the swap before it has happened,
i.e. before finalisation

If Alice cancels the swap, the assets are returned to their owners

Alice Bob
Smart contract

Atomic swap upgraded

Adapted from [van der Meyden, 2018]

• Assume that we want to upgrade atomic swap in the
following way

• Any agent can cancel the swap before it has happened,
i.e. before finalisation

If Alice cancels the swap, the assets are returned to their owners

Alice Bob
Smart contract

Atomic swap upgraded

(M, t) ⊧ ⟨⟨B⟩⟩dep(B, b)
(MU, t) ⊧ ¬⟨⟨B⟩⟩dep(B, b)

MU

⟨rec, wait⟩

s
has(A, a)
has(B, b)

t
dep(A, a)
has(B, b)

u
has(A, a)
dep(B, b)

v
dep(A, a)
dep(B, b)

w
has(A, b)
has(B, a)

⟨rec, rec⟩

⟨wait, rec⟩

⟨wait, rec⟩

⟨wait, wait⟩

⟨rec, wait⟩

⟨wait, wait⟩

⟨wait, wait⟩

⟨wait, wait⟩

⟨ fin, wait⟩

⟨wait, fin⟩

⟨ fin, fin⟩⟨canc, * ⟩

⟨ * , canc⟩

⟨canc, * ⟩
⟨ * , canc⟩

Temporal DDCL
• Finally, to capture the fact that older versions of smart

contracts may remain on a blockchain we add a temporal
backwards-looking relation

• This relation also allows for introspection: reasoning about
current version of a smart contract based on its previous
versions

M MU
𝒞

(𝒞, MU, s) ⊧ φ ∧ ◊¬φ

Results and open questions
We proposed a use of Temporal DDCL for smart contract upgrades

We studied some properties of models for Temporal DDCL

We argued that the complexity of the model checking problem for
Temporal DDCL is P-complete

?More expressive base logic than CL (e.g. ATL or SL)?

?More expressive model updates?

?Proof system?

