
Coalition Logic for Specification and Verification
of Smart Contract Upgrades

Rustam Galimullin(B)1[0000−0003−4195−8189] and Thomas Ågotnes1,2

1 University of Bergen, Bergen, Norway
2 Southwest University, Chongqing, China

{rustam.galimullin, thomas.agotnes}@uib.no

Abstract. It has been argued in the literature that logics for reasoning
about strategic abilities, and in particular coalition logic (CL), are well-
suited for verification of properties of smart contracts on a blockchain.
Smart contracts, however, can be upgraded by providing a new version
of a contract on a new block. In this paper, we extend one of the recent
formalisms for reasoning about updating CL models with a temporal
modality connecting a newer version of a model to the previous one. In
such a way, we make a step towards verification of properties of smart
contracts with upgrades. We also discuss some properties of the resulting
logic and the complexity of its model checking problem.

Keywords: Coalition Logic · Smart Contracts · Blockchain · Model
Checking.

1 Introduction

Smart contracts. Smart contracts (SCs) [3, Chapter 7] are programs, usually
written in a high-level programming language like Solidity [1], that are stored on
a blockchain [17] and executed by nodes of a given distributed ledger. Probably
the most well-known blockchain that supports storing and execution of SCs
is Ethereum [20]. Since SCs are stored on a blockchain, once deployed, they
are immutable. This, however, does not necessarily mean that SCs cannot be
amended, in the case of critical bugs, or upgraded. There are several ways to
upgrade SCs, including using a separate contract as a proxy, and splitting one
contract into several smaller ones. In this paper, we do not discriminate between
different ways of upgrading SCs, and focus on upgrades themselves.

Verification and specification of smart contracts. Logic-based verification of
blockchain systems and SCs is a nascent field (see a recent survey [19]). For
example, authors of [11] use a classic runs-and-system approach to analyse the
notion of consensus on a blockchain from an epistemic perspective. A logic for
reasoning about blockchain updates was presented in [4], where the authors
follow the lead of dynamic epistemic logic (DEL) [6]. In [14] a variant of temporal
logic is used to focus on properties of a blockchain in a permissionless setting.

It is argued in [15, 16] that logics for reasoning about abilities of agents, in
particular coalition logic (CL) [18] and ATL [2], have great potential for verifi-

2 R. Galimullin and T. Ågotnes

cation of properties of SCs. However, none of the proposed logical approaches
allows one to reason about upgrades of SCs.

One conceptual difficulty we have to overcome is that in the context of
blockchains we can have several iterations of an SC recorded on several blocks.
New iterations may come about as updates of a contract triggered by new finan-
cial policies or amendments to the existing features. This highlights the fact that
SCs on a blockchain allow for introspection [12]: it is possible to reason about
current properties of a contract based on its earlier versions.

To the best of our knowledge, the only extension of CL or ATL that allows for
updating agents’ abilities is a recently introduced dictatorial dynamic coalition
logic (DDCL) [7]. DDCL follows the paradigm which is pretty much ubiquitous in
DEL: model + update = updated model. As its name suggests, DDCL can express
updating dictatorial powers of single agents either by granting such powers or
revoking them.

Contribution of the paper. In Section 2.1 we present an extension of DDCL
with temporal ‘yesterday’ relations between a model and the corresponding up-
dated model. Moreover, we consider chain models that are a natural extension of
the ‘model → updated model’ approach. Introduced temporal relations refer to
a previous version of a contract, thus adding introspection to the setting. After
that, in Section 2.2, we tackle the model checking problem of the introduced
logic by showing that it is P -complete. We conclude in Section 3.

2 Reasoning About Abilities of Agents on Chain Models

In this section we first introduce temporal DDCL (TDDCL), which is an exten-
sion of DDCL [7], and then study the complexity of its model checking problem.

2.1 Syntax and Semantics

Let P be a countable set of propositional variables, and A be a finite set of
agents. Subsets C of A are called coalitions.

Definition 1. The language T DDCL is given by the following BNF:

T DDCL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | 〈〈C〉〉ϕ | [+U]ϕ | [−U]ϕ
+U ::= (ϕ, a, ϕ)+ | (ϕ, a, ϕ)+,+U
−U ::= (ϕ, a, ϕ)− | (ϕ, a, ϕ)−,−U

where p ∈ P , a ∈ A, C ⊆ A.The duals are defined as [[C]]ϕ := ¬〈〈C〉〉¬ϕ,
〈+U〉ϕ := ¬[+U]¬ϕ, 〈−U〉ϕ := ¬[−U]¬ϕ, and �ϕ := ¬♦¬ϕ.

Formulas of the form 〈〈C〉〉ϕ are read as ‘coalition C can force ϕ’, and ex-
pressions ♦ϕ mean that ‘ϕ is the case in the previous version of a contract’.
Constructs +U are called positive updates, and formulas [+U]ϕ are read as ‘af-
ter (positive) update +U , ϕ is true’. Constructs −U are called negative updates,
and formulas [−U]ϕ are read as ‘after (negative) update −U , ϕ is true’3.
3 We will sometime use U to denote both positive and negative updates.

Coalition Logic for Smart Contract Upgrades 3

The fragment of T DDCL with only positive updates is T DDCL+; the frag-
ment with only negative updates is T DDCL−. The language of positive DDCL
DDCL+ is obtained from T DDCL by omitting [−U]ϕ and ♦ϕ, and the language
of negative DDCL DDCL− is obtained from T DDCL by omitting [+U]ϕ and
♦ϕ. Finally, the fragment of T DDCL that excludes updates and ♦ϕ is called
coalition logic CL [18].

Formulas of T DDCL are interpreted on chain models that, in turn, are se-
quences of concurrent game models.

Definition 2. A concurrent game model (CGM), or a model, is a tuple M =
(S,Act, act, out, L) consisting of the following elements:

– S is a non-empty set of states, and Act is a non-empty set of actions.
– Function act : A × S → 2Act \ ∅ assigns to each agent and each state a

non-empty set of actions. A C-action at a state s ∈ S is a tuple αC such
that αC(i) ∈ act(i, s) for all i ∈ C. The set of all C-actions in s is denoted
by act(C, s). We will also write αC1 ∪ αC2 to denote a C1 ∪ C2-action with
C1 ∩ C2 = ∅.
A tuple of actions α = 〈α1, . . . , αk〉 with k =| A | is called an action profile.
An action profile is executable in state s if for all i ∈ A, αi ∈ act(i, s). The
set of all action profiles executable in s is denoted by act(s). An action profile
α extends a C-action αC , written αC v α, if for all i ∈ C, α(i) = αC(i).

– Function out assigns to each state s and each α ∈ act(s) a unique output
state.

– L : S → 2P is the valuation function.

We will denote a CGM M with a designated, or current, state s as (M, s).Also,
we will use superscript M to refer to elements of the corresponding tuple.

Example 1. Consider model M1 in Figure 1 on page 5. In the vein of [15, 16] we
can think of CGMs as abstract descriptions of contracts specifying what partici-
pating parties can and cannot achieve. For the sake of the example, let agents a,
b, and c be directors of a company. State s then corresponds to agents discussing
whether they should issue stock options. The only way for stock options to be
issued is by a and b agreeing to do so (choosing actions a1 and b1). All other
agents’ decisions lead to them staying in the discussion phase. Also observe that
agent c does not influence the decision. If a and b agree on issuing stock options
(action profile a1b1c0), the system transitions to state t meaning that the options
has been issued. From this state, agents can either return to the discussion phase
(action profile a1b1c0) or continue issuing options (all other action profiles).

In the model, we have that no agent can force p on their own, written as
(C1,M1, s) |= [[a]]¬p ∧ [[b]]¬p ∧ [[c]]¬p. At the same time, a coalition consisting of
agents a and b can force a state satisfying p (by choosing actions a1 and b1) since
agent c has no action to preclude such a transition: (C1,M1, s) |= 〈〈{a, b}〉〉p.

Updates allow us to modify a CGM by adding or removing action profiles.
Given a positive update +U and a CGM M , we denote updated CGM as M+U .
Similarly, we write M−U in the case of a negative update −U .

4 R. Galimullin and T. Ågotnes

Unfortunately, due to the lack of space, we cannot present formal definitions
for updated CGMs, and instead resort to intuitive explanations and examples.
Since the particularities of such updates are not the focus of this work, we believe
that this omission does not hinder the readability of the paper. For definitions
and details the interested reader is referred to [7, 9].

To provide the intuition behind updates, we first define forcing actions, i.e.
actions that allow a particular single agent to force a specific outcome no matter
which actions other agents choose. Formally, the set of forcing actions for agent
i and state s, denoted as f(i, s), is {αi ∈ act(i, s) | ∀α, β ∈ act(s) : (αi v
α and αi v β) implies out(α, s) = out(β, s)}.

Now, the intuition behind [+U]ϕ is as follows. Each (ϕ, a, ψ)+ specifies be-
tween which states agent a will be granted a new forcing action. In case if
multiple states satisfy ϕ or ψ, agent a will have a new action for each pair of
states. Negative updates, on the other hand, specify between which states forc-
ing actions should be preserved. In other words, if agent a has a forcing action
from a state satisfying ϕ to a state satisfying ψ, then they will retain the action
if triple (ϕ, a, ψ)− appears in −U , and lose it otherwise.

Example 2. Consider once again CGMM1 depicted in Figure 1. Assume that the
initial version of the contract has led to a and b abusing their power and issuing
stock options (staying in state t) without ever discussing it (not transitioning to
state s). To mitigate this, a new policy has been issued: agent c should decide
whether the company continues issuing stock options or enters a discussion state.
Moreover, the new policy also requires that agent a’s decision is enough to issue
stock. Such a policy can be described by update +U1 = {(¬p, a, p)+, (p, c,¬p)+}.
The result of updating the existing contract with this new policy is modelM2. In
M2 we indeed have that in all ¬p-states (state s) agent a has a new forcing action
a2 to force p-states (state t). Similarly, agent c now has a new forcing action
c1 to force state s from state t. We thus have that (C1,M1, t) |= 〈〈{a, b}〉〉p ∧
[+U1][[{a, b}]]¬p meaning that in state t of CGM M1 a coaltion of agents a and
b can force a p state, but after update +U1 they lose such a power.

As a result of the update, model M2 has the following non-empty sets of
forcing actions: f(a, s) = {a2} and f(c, t) = {c1}. Continuing with the company
setting, assume that the next policy was to revoke the ability of agent c to
force the discussion phase (state s) from the state of issuing stocks (state t).
Such a policy can be represented by a negative update −U2 = {(¬p, a, p)−}
where triple (¬p, a, p)− prescribes to preserve a’s power to force a p-state from
a ¬p-state. Since there are no more triples in −U2, we remove all other forcing
actions and corresponding action profiles. The result of updating M2 with −U2

is M3, where there is only forcing action left is f(a, s) = {a2}. Observe that
action profiles containing c1 were removed from the model. Formally, it holds
that (C1,M2, t) |= 〈〈c〉〉¬p∧ [−U2][[c]]p meaning that in state t of CGMM2, agent
c can force ¬p, but after negative update −U2 she loses such an ability.

Definition 3. A minimal chain model C is a pair (M,), whereM is a non-
empty set of CGMs, and is a possibly empty relation between SM × SN ,

Coalition Logic for Smart Contract Upgrades 5

where M and N are CGMs such that M,N ∈ M. A minimal chain model with
a designated state s of CGM M is denoted by (C,M, s).

Definition 4. Let C = (M,) be a minimal chain model, M ∈ M be a
CGM, and U be an update. The result of executing U in CGM M on C is
CU = (MU , U), which we call updated minimal chain model, where MU =

M∪ {MU}, and U= ∪{(s, s) | π1((s, s)) ∈ SM and π2((s, s)) ∈ SM
U } 4.

Updating a modelM in a minimal chain model C adds updated CGMMU to
C and connects each state ofMU with a corresponding state ofM with temporal
relation (represented by dashed arrows in Figure 1).

Example 3. The previously considered examples of positive and negative updates
in Figure 1 can be viewed now as a single chain structure. CGM M1 can be

s : ¬p

t : p

M1

a1b1c0 a1b1c0

a0b0c0
a0b1c0
a1b0c0

a0b0c0
a0b1c0
a1b0c0

s : ¬p

t : p

M2

a1b1c0
a2bxc0

a1b1c0
axbxc1

a0b0c0
a0b1c0
a1b0c0

a0b0c0
a0b1c0
a1b0c0

s : ¬p

t : p

M3

a1b1c0
a2bxc0

a1b1c0

a0b0c0
a0b1c0
a1b0c0

a0b0c0
a0b1c0
a1b0c0

Fig. 1. Chain model C1 consisting of CGMsM1,M2, andM3. Dashed arrows represent
temporal relations, and bold actions depict new action profiles required by an update.
Symbol x stands for elements of {0, 1}.

considered as an initial version of an SC. After incorporating new policy +U1,
a new version of the contract, M2, is added to the initial one. The two contracts
are now also connected by a temporal relation such that M1 is reachable from
M2. Adding a third version M3 as a result of updating M2 with −U2 makes the
chain longer So, having the latest version of a contract, M3, we can express, for
example, that now agent a can on her own force the company to issue stocks
(transition to state t) while it was not possible two iterations of the contract ago.
Formally, (C1,M3, s) |= 〈〈a〉〉p ∧ ♦♦¬〈〈a〉〉p, where C1 refers to the whole chain,
and M3 refers to the third version of the contract.
4 π1 and π2 are left and right projections of an ordered pair.

6 R. Galimullin and T. Ågotnes

Upgrading smart contracts in the blockchain setting preserves history i.e.
updating a chain model does not alter the already existing CGMs and their order.
Thus, we can reason introspectively about the evolution of a smart contract.

Definition 5. Let (C,M, s) be a pointed minimal chain model. The semantics
of TDDCL are defined recursively as follows, where Boolean cases are omitted:

(C,M, s) |= ♦ϕ iff ∃N ∈M, t ∈ SN : t s and (C, N, t) |= ϕ
(C,M, s) |= 〈〈C〉〉ϕ iff ∃αC ,∀αC : (C,M, t) |= ϕ, where t = out(s, αC ∪ αC)
(C,M, s) |= [+U]ϕ iff +U is executable in M implies (C+U ,M+U , s) |= ϕ
(C,M, s) |= [−U]ϕ iff −U is executable in M implies (C−U ,M−U , s) |= ϕ

We call a formula ϕ valid if for all (C,M, s) it holds that (C,M, s) |= ϕ.

The executability condition in the above definition stems from the fact that
not all updates can be executed. More on this in [7].

Remark 1. Note that CGMs do not correspond to specific blocks on a given
blockchain. They are rather abstract specifications of different versions of con-
tracts. Thus, our approach encompasses software versioning in general. We will
stick, however, with SCs as the prime source of our intuitions.

The class of minimal chain models is too broad for purposes at hand. For
example, it allows minimal chain models to have CGMs with several previoius
CGMs. This goes against the intuition of having upgrades of an SC on a blockchain
since for each block there is at most one previous block. Below we define a sub-
class of minimal chain models that satisfy our intuitions about blockchains.

Definition 6. Let C = (M,) be a minimal chain model, and M ∈ M be a
CGM. We call M the initial CGM if for all s ∈ SM , relation is empty.

Let . . . t1 . . . tn s be a sequence of -relations of maximal length
ending in s. We call the length of the sequence depth of s, and write d(s). Note
that d(s) can be infinite. All states in the initial CGM have depth 0.

Definition 7. Minimal chain model C = (M,) is called a chain model if it
satisfies the following properties.

1. The initial CGM: there is a single M ∈M such that M is the initial CGM.
2. CGM-definedness: for all states s, t, and u, if t s and u s, then t = u.

In other words, for each state in a CGM there is only one previous state.
3. Depth-definedness: d(s) 6=∞ for all s.
4. Valuation preservation: for all states s and t belonging to some M and N ,

if s t, then s ∈ LM (p) if and only if t ∈ LN (p). The property reflects that
updates do not change valuations of propositional variables.

5. Update-definedness: for all s ∈ SM , t ∈ SN , if s t, then there is a U s.t.
MU = N . Each new CGM is a result of updating the previous one.

Depth-definedness implies acyclicity and irreflexivity of . On the other
hand, depth-definedness does not imply finiteness. Indeed, our chain models are,
in fact, tree-like, and thus they allow a possibly infinite number of children at

Coalition Logic for Smart Contract Upgrades 7

a given node. Moreover, intransitivity of follows from irreflexivity and CGM-
definedness. Also note that both chain and minimal chain models do not allow
agents to force transitions between different blocks (the synchronicity property).

Theorem 1. Let C = (M,) be a chain model, and let U be an update. The
result CU of updating C with U is a chain model.

Proposition 1. The following formulas are valid on chain models.
1. ♦(ϕ ∧ ψ)↔ ♦ϕ ∧ ♦ψ 2. ¬♦ϕ↔ ♦¬ϕ 3. ϕ→ [U]♦ϕ

The first formula expresses the property that there is only one previous CGM.
The second property states that ♦ is its own dual. Observe that the first two
items are not valid on minimal chain models. Finally, the third validity shows
that adding a new CGM does not change the existing CGMs.

2.2 Model checking

The model checking problem for DDCL+ and DDCL− is investigated in [9],
where it is shown to be P -complete for both logics. The provided algorithms label
each state of a given model by a subformula of a given formula. The labelling
is inspired by the classic model checking algorithm for CTL [5]. There are two
separate algorithms, one for DDCL+ and one for DDCL−, because it is not yet
clear how we can combine positive and negative updates in such a way that
the resulting complexity is still in P. Thus, we will present extentions of the
algorithms from [9] so that they work with formulas of T DDCL+ and T DDCL−.

Given a formula ϕ we organise the list of its subformulas in such a way that
formulas within updates are evaluated before formulas that are in the scope
of these updates. It allows us to know the effect of an update before we have
to evaluate formulas that are affected by the update. As an example, consider
formula ϕ := [(q, b,¬q)+]♦p with +U1 := (q, b,¬q)+. The ordered labelled list
sub(ϕ) looks as follows: q, ¬q, (p)+U1

, (♦p)+U
1

, [(q, b,¬q)+]♦p.

Algorithm 1 An algorithm for global TDDCL+ model checking
1: procedure GlobalTDDCL+(C,M, ϕ)
2: for all ψσ ∈ sub(ϕ) do
3: for all M ∈ M do
4: for all s ∈ SM do
5: case ψσ = (♦χ)σ

6: if there is a t such that t s and t is labelled with χσ then
7: label s with (♦χ)σ

8: end procedure

Algorithm 1 is a modification of the corresponding algorithm for DDCL+.
The main idea behind it is that while checking ψσ = (〈〈C〉〉χ)σ, we need to

8 R. Galimullin and T. Ågotnes

‘model’ the effects of positive updates +U . To do this we check for each update
in σ, starting from the last one, whether it affected agents from C.

Compared to the algorithm for DDCL+, GlobalTDDCL+ has an additional
loop over CGMs in the given blockchain model C (line 3), and an additional case
for (♦χ)σ (lines 5–7). All other case are the same as in [9] and we omit them. It
is clear Algorithm 1 follows the semantics, and thus its correctness can be shown
by the induction on ϕ. Moreover, the case for (♦χ)σ takes polynomial time.

Theorem 2. Complexity of TDDCL+ model checking problem is P-complete.

Model checking TDDCL− is similar to model checking TDDCL+. It also
requires preparation of list sub(ϕ) with the only difference that now after we are
done with labelling subformulas within update −U , we include −U in the list
right after the subformulas. For example, having a formula ϕ := [(q, b,¬q)−]♦p
with −U1 := (q, b,¬q)+, the ordered labelled list sub(ϕ) looks as follows: q, ¬q,
−U1, (p)+U

1

, (♦p)+U
1

, [(q, b,¬q)+]♦p.
The model checking algorithm for TDDCL− is a modification of the one for

DDCL− exactly in the same way as in Algorithm 1.To model negative updates,
the DDCL− algorithm marks action profiles with a sequence of negative updates
meaning that the corresponding action profile has been preserved after these
updates. Similarly to GlobalTDDCL+, case (♦χ)σ takes polynomial time.

Theorem 3. Complexity of TDDCL− model checking problem is P-complete.

3 Conclusion

We presented TDDCL, a logic that allows us to reason about SC upgrades in the
blockchain setting: we considered its properties and the model checking problem.
Since this is a first step towards specification of SCs on a blockchain, there is a
plethora of open problems.

First, our model checking algorithm works with fragments of T DDCL, either
with the positive or negative version. So far, it is not clear how one can combine
both types of updates while maintaining polynomial time complexity. In the
future, we would like to provide a general algorithm and implement it as an
extension of one the tools for strategic logics (e.g. MCMAS [13], MCK [10]).

Updates of CGMs in our case are restricted to granting and revoking dictato-
rial powers of single agents. Finding other, more general, ways of updating SCs
is an exciting avenue of further research. An approach we find most tempting is
incorporating chain structures to a recent dynamic CL with action models [8].
Similar goals can be set out for base languages that are more expressive than
CL, like ATL and ATL∗.

References

1. Solidity programming language. https://soliditylang.org, accessed: 20-01-2022

Coalition Logic for Smart Contract Upgrades 9

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002). https://doi.org/10.1145/585265.585270

3. Antonopoulos, A.M., Wood, G.: Mastering Ethereum. O’Reilly (2018)
4. Brünnler, K., Flumini, D., Studer, T.: A logic of blockchain up-

dates. Journal of Logic and Computation 30(8), 1469–1485 (2020).
https://doi.org/10.1093/logcom/exaa045

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52–71. Springer (1981). https://doi.org/10.1007/BFb0025774

6. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese
Library, vol. 337. Springer (2008)

7. Galimullin, R., Ågotnes, T.: Dynamic coalition logic: Granting and revoking dicta-
torial powers. In: Ghosh, S., Icard, T. (eds.) Proceedings of the 8th LORI. LNCS,
vol. 13039, pp. 88–101. Springer (2021). https://doi.org/10.1007/978-3-030-88708-
7_7

8. Galimullin, R., Ågotnes, T.: Action models for coalition logic. In: Proceedings of
the 4th DaLí. (to appear) (2022)

9. Galimullin, R., Ågotnes, T.: Dictatorial dynamic coalition logic. Manuscript. Sub-
mitted to a journal (2022), https://rgalimullin.gitlab.io/DDCL/ddcldraft.pdf

10. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) Proceedings of the 16th CAV. LNCS, vol. 3114,
pp. 479–483. Springer (2004). https://doi.org/10.1007/978-3-540-27813-9_41

11. Halpern, J.Y., Pass, R.: A knowledge-based analysis of the blockchain protocol.
In: Lang, J. (ed.) Proceedings of the 16th TARK. EPTCS, vol. 251, pp. 324–335
(2017). https://doi.org/10.4204/EPTCS.251.22

12. Herlihy, M., Moir, M.: Blockchains and the logic of accountability: Keynote address.
In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st LICS. pp.
27–30. ACM (2016). https://doi.org/10.1145/2933575.2934579

13. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. International Journal on Software Tools
for Technology Transfer 19(1), 9–30 (2017). https://doi.org/10.1007/s10009-015-
0378-x

14. Marinkovic, B., Glavan, P., Ognjanovic, Z., Studer, T.: A temporal epistemic logic
with a non-rigid set of agents for analyzing the blockchain protocol. Journal of Logic
and Computation 29(5), 803–830 (2019). https://doi.org/10.1093/logcom/exz007

15. van der Meyden, R.: On the specification and verification of atomic swap smart
contracts. CoRR abs/1811.06099 (2018), http://arxiv.org/abs/1811.06099

16. van der Meyden, R.: On the specification and verification of atomic swap smart
contracts (extended abstract). In: Proceedings of the 1st ICBC. pp. 176–179. IEEE
(2019). https://doi.org/10.1109/BLOC.2019.8751250

17. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008)

18. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002). https://doi.org/10.1093/logcom/12.1.149

19. Tolmach, P., Li, Y., Lin, S., Liu, Y., Li, Z.: A survey of smart contract formal spec-
ification and verification. ACM Computing Surveys 54(7), 148:1–148:38 (2022).
https://doi.org/10.1145/3464421

20. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project (2014), https://ethereum.github.io/yellowpaper/paper.pdf

