Intentional Anonymous Public Announcements

LORI 2025 Xi'an

Thomas Ågotnes

University of Bergen, Norway Shanxi University, China

Rustam Galimullin, University of Bergen, Norway Ken Satoh, Center for Juris-informatics, Japan Satoshi Tojo, Asia University, Japan

Anonymous Public Announcements

Example:

We come back to this room after a break, and we see that someone has written "it was raining in Bergen yesterday" on the whiteboard. Only members of our group have access to this room.

What do you learn?

Elevator pitch

- We introduce a new public announcement operator modeling anonymous public announcements
- "In-between" an announcement from the "outside" and an announcement from the "inside"
- Assume (common knowledge) that the announcer intended to stay anonymous => more revealing!
- It all boils down to the notion of a safe announcement

Background: Epistemic Logic

Given: a set P of atomic propositions and a finite set N of agents

$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid K_a \phi$$

Models: $M = (S, \sim, V)$, where

- \bullet S is a non-empty set of worlds,
- $\sim: N \longrightarrow \wp(S \times S)$ assigns a reflexive, transitive and symmetric accessibility relation, \sim_a , to each agent a, and
- $V: P \longrightarrow \wp(S)$ maps each proposition to the set of worlds where it is true.

Background: Epistemic Logic

Interpretation:

$$M, s \models p \quad \text{iff} \quad s \in V(p)$$

$$M, s \models \neg \phi \quad \text{iff} \quad M, s \not\models \phi$$

$$M, s \models \phi_1 \land \phi_2 \quad \text{iff} \quad M, s \models \phi_1 \text{ and } M, s \models \phi_2$$

$$M, s \models K_a \phi \quad \text{iff} \quad \forall t \in S \text{ where } s \sim_a t, M, t \models \phi$$

$$\phi ::= p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid K_i \phi \mid [\phi!] \psi$$

Interpretation:

$$M, s \models [\psi!] \phi$$
 iff $M, s \models \psi \Longrightarrow M^{\psi!}, s \models \phi$

 $M^{\psi!} = (S', \sim', V')$ is such that:

- $\bullet S' = \{ s \in S \mid M_s \models \psi \};$
- for all $a \in N$, $\sim'_a = \sim_a \cap (S' \times S')$;
- for all $p \in P$, $V'(p) = V(p) \cap S'$.

 $[\phi!]\psi$: after ϕ is truthfully announced "from the outside", ψ is true $[K_a\phi!]\psi$: after ϕ is truthfully announced by agent a, ψ is true

 $[\phi!]\psi$: after ϕ is truthfully announced "from the outside", ψ is true $[K_a\phi!]\psi$: after ϕ is truthfully announced by agent a, ψ is true More information!

 $[\phi!]\psi$: after ϕ is truthfully announced "from the outside", ψ is true $[K_a\phi!]\psi$: after ϕ is truthfully announced by agent a, ψ is true More information!

We are looking for something in-between.

Assuming common knowledge of the intention to stay anonymous

- We learn that the anonymous agent knew phi
- .. and that she knew that it was safe to announce phi
- What does safety mean?

Safety: 2-anonymity is not enough (3 agents)

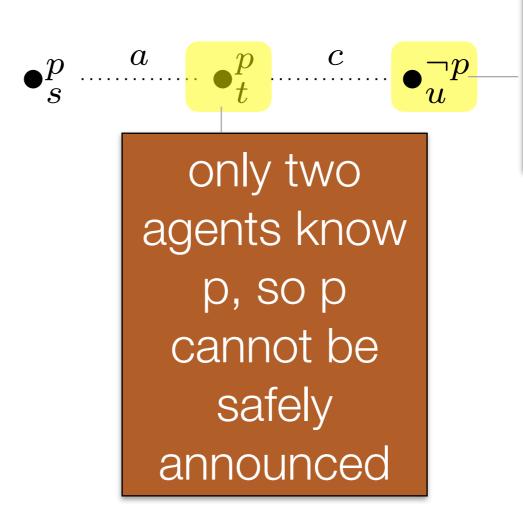
$$ullet^p_s \dots b \\ ullet^p_s$$

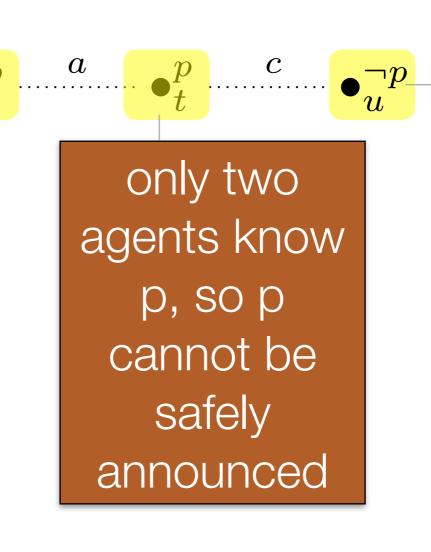
Safety: 2-anonymity is not enough (3 agents)

$$ullet^p_s \dots b$$

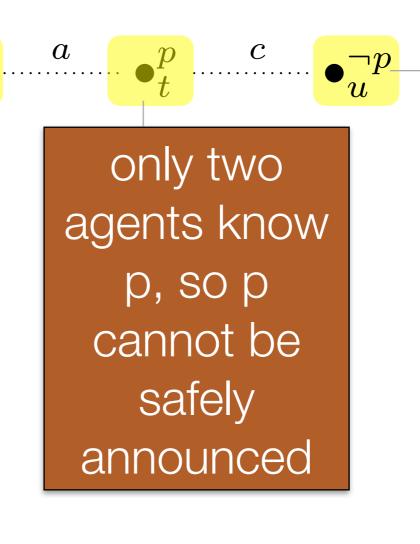
If p is announced by a or c, the other agent knows who it was

 $ullet_s^p \quad \stackrel{a}{\underset{t}{\dots}} \quad ullet_t^p \quad \stackrel{c}{\underset{u}{\dots}} \quad ullet_u^p$



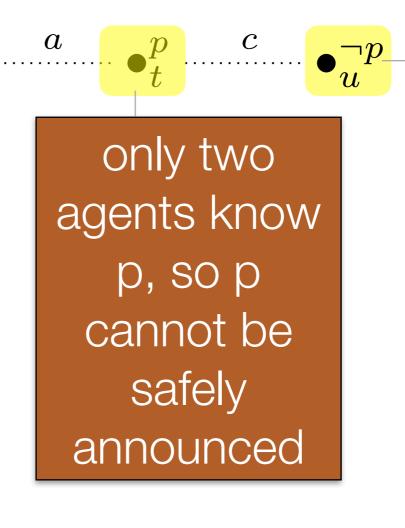


b knows that p is not safe for a and that c knows that, so p is not safe for b



b knows that p is not safe for a and that c knows that, so p is not safe for b

similarly, p is not safe for c



b knows that p is not safe for a and that c knows that, so p is not safe for b

similarly, p is not safe for c

only two
agents know
p, so p
cannot be
safely
announced

p cannot be announced by anyone

p cannot safely be announced by anyone!

Not enough that three agents know ϕ .

Not enough that three agents know ϕ .

They must also know that three agents know ϕ .

Not enough that three agents know ϕ .

They must also know that three agents know ϕ .

.. and so on..

Not enough that three agents know ϕ .

They must also know that three agents know ϕ .

.. and so on..

What about common knowledge? $\bigvee_{a\neq b\neq c} C_{\{a,b,c\}} \phi$

Not enough that three agents know ϕ .

They must also know that three agents know ϕ .

.. and so on..

What about common knowledge? $\bigvee_{a\neq b\neq c} C_{\{a,b,c\}} \phi$ Sufficient but not necessary.

Not enough that three agents know ϕ .

They must also know that three agents know ϕ .

.. and so on..

What about common knowledge? $\bigvee_{a\neq b\neq c} C_{\{a,b,c\}} \phi$ Sufficient but not necessary.

We don't need it to be the same three agents.

Let
$$N^3 = \{ \{a, b, c\} : a, b, c \in N, a \neq b \neq c \}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

Let
$$N^3 = \{ \{a, b, c\} : a, b, c \in N, a \neq b \neq c \}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

$$M,s \models \bigvee_{G_1 \in N^3} E_{G_1} \phi$$

Let
$$N^3 = \{ \{a, b, c\} : a, b, c \in N, a \neq b \neq c \}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1} \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}\phi)$$

Let
$$N^3 = \{ \{a, b, c\} : a, b, c \in N, a \neq b \neq c \}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1} \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}\phi)$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}(\phi \land \bigvee_{G_3 \in N^3} E_{G_3}\phi))$$

Let
$$N^3 = \{\{a, b, c\} : a, b, c \in N, a \neq b \neq c\}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1} \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}\phi)$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}(\phi \land \bigvee_{G_3 \in N^3} E_{G_3}\phi))$$

. . .

Let
$$N^3 = \{ \{a, b, c\} : a, b, c \in N, a \neq b \neq c \}$$

$$E_G \phi \equiv \bigwedge_{i \in G} K_i \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1} \phi$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}\phi)$$

$$M, s \models \bigvee_{G_1 \in N^3} E_{G_1}(\phi \land \bigvee_{G_2 \in N^3} E_{G_2}(\phi \land \bigvee_{G_3 \in N^3} E_{G_3}\phi))$$

• • •

What we want is the greatest fixed-point of:

$$f(S) = ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{V[x=S]}^M$$

(where x is not in ϕ)

Safety

 $\Delta \phi$: ϕ can safely be announced

Safety

 $\Delta \phi$: ϕ can safely be announced

In modal μ -calculus: $\blacktriangle \phi \leftrightarrow \nu x. \bigvee_{G \in N^3} E_G(\phi \land x)$

Safety

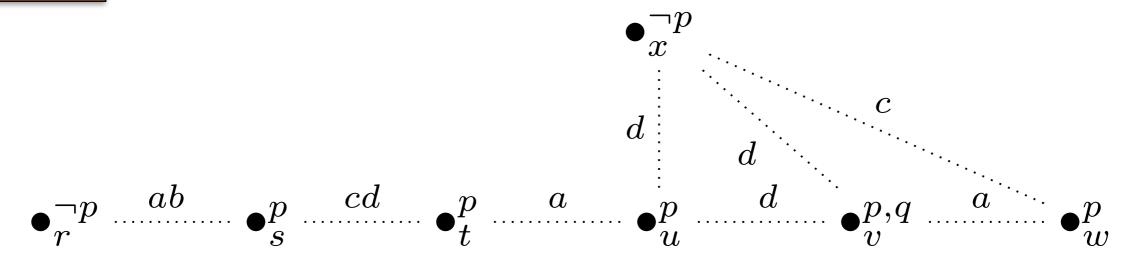
 $\Delta \phi$: ϕ can safely be announced

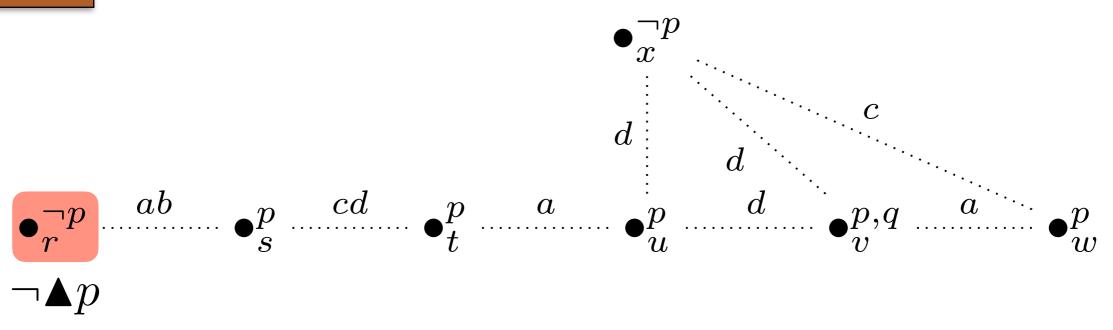
In modal
$$\mu$$
-calculus: $\blacktriangle \phi \leftrightarrow \nu x. \bigvee_{G \in \mathbb{N}^3} E_G(\phi \land x)$

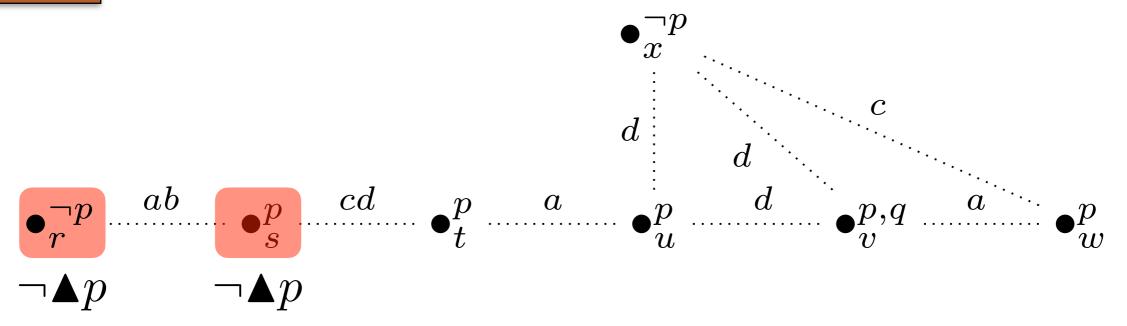
$$M, s \models \blacktriangle \phi \Leftrightarrow s \in \bigcup \left\{ S : S \subseteq ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{[x=S]}^M \right\}$$

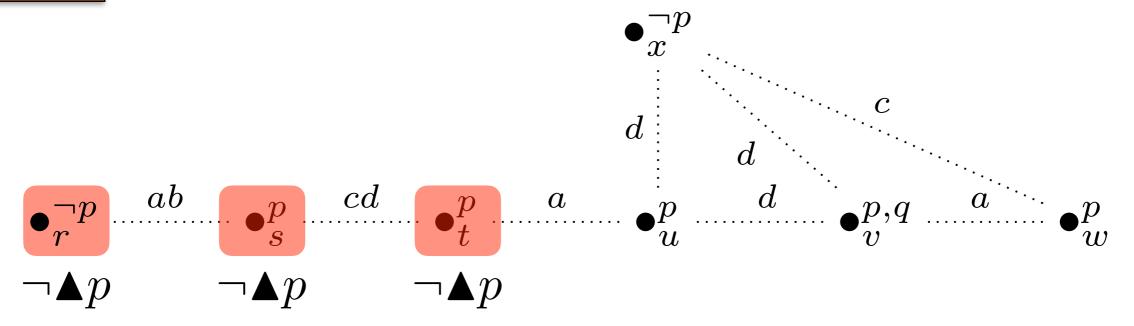
Knowledge of safety

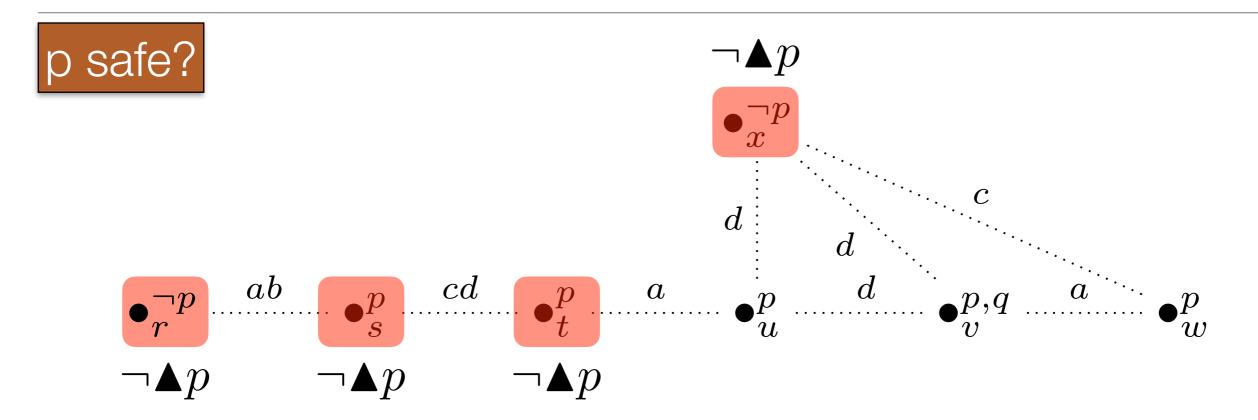
 $K_a \blacktriangle \phi$: ϕ can safely be announced by a (a is a member of a group of three such that ...)

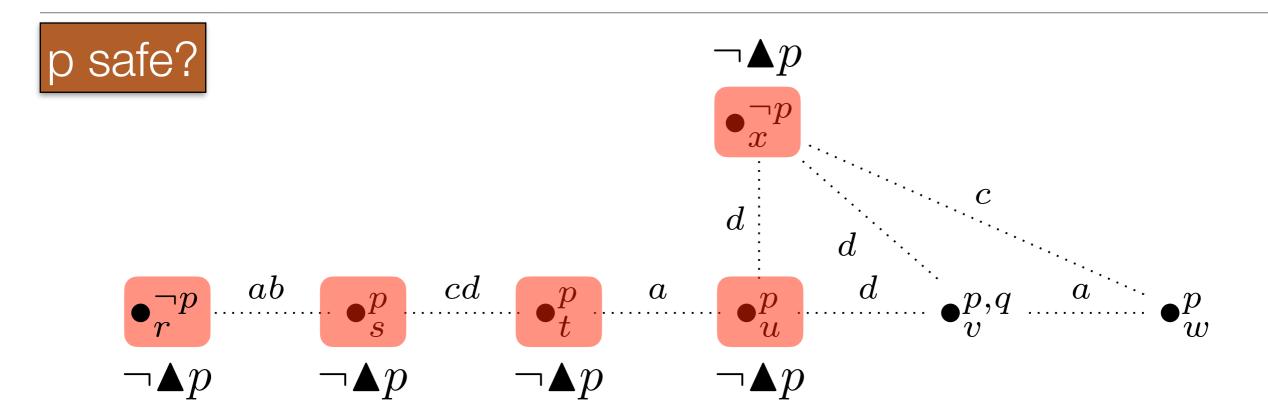


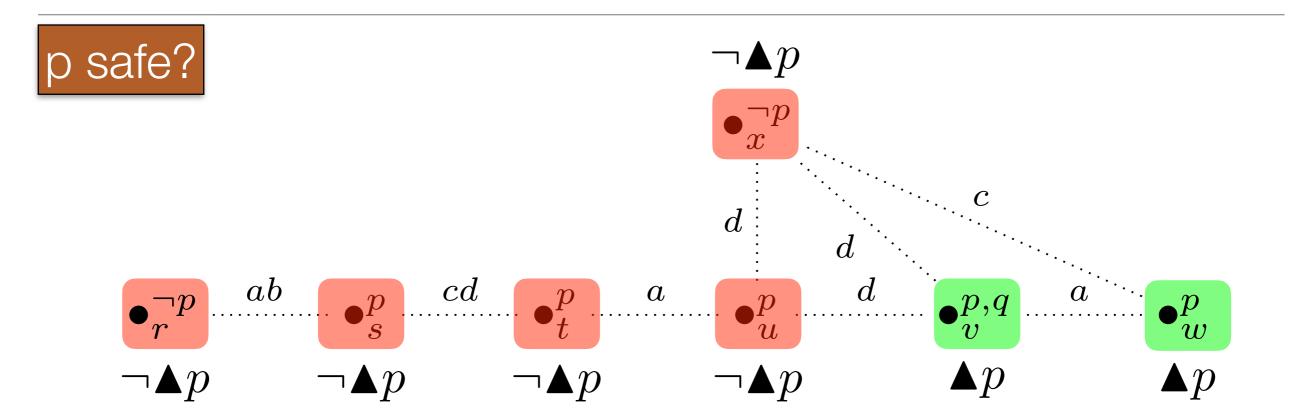


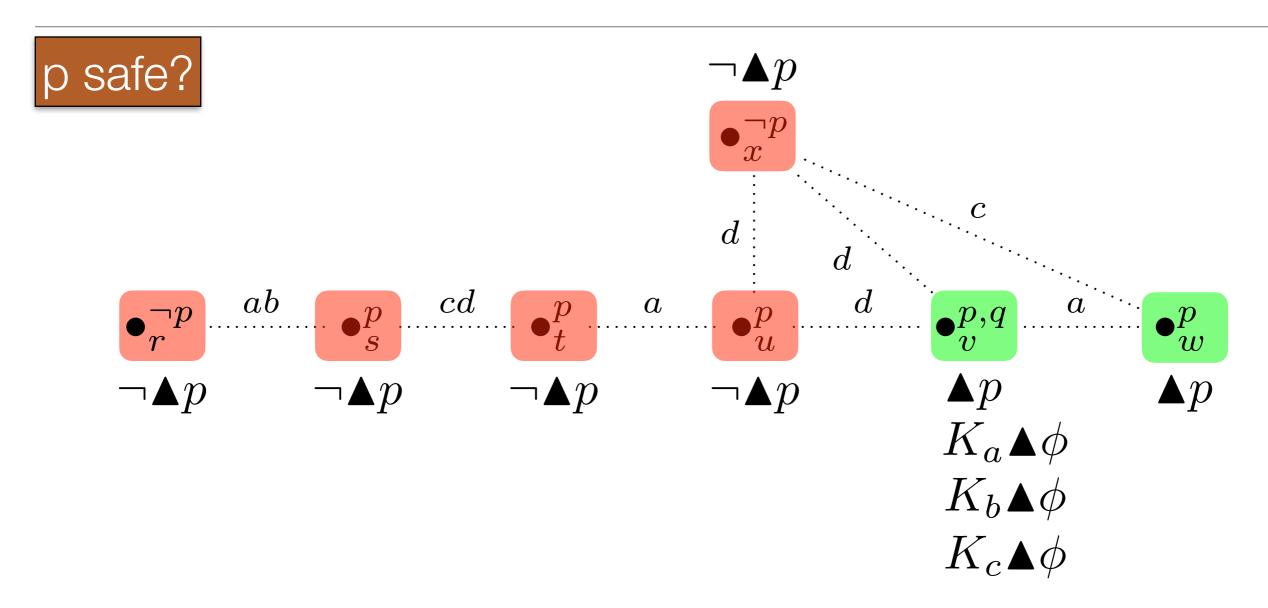














Anonymous Public Announcement Logic with Intentions

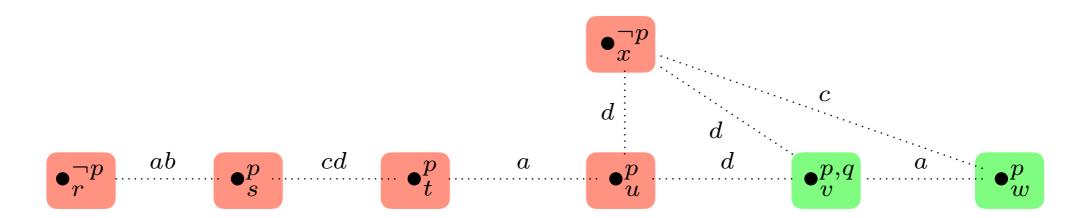
 $[\phi \ddagger] \psi$: after any safe announcement of ϕ , ψ is true

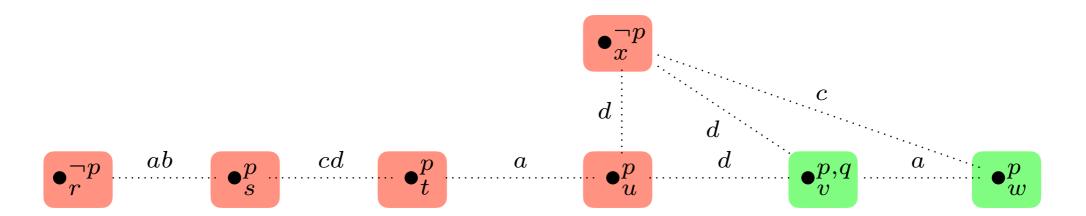
Definition 1 The update of epistemic model $M = (S, \sim, V)$ by the safe pseudo-anonymous announcement of ϕ is the epistemic model $M^{\phi\ddagger} = (S', \sim', V')$ where:

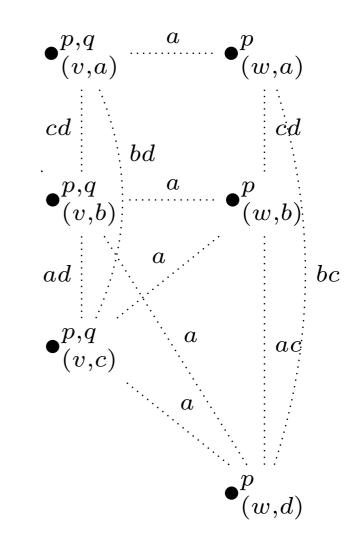
- $S' = \{(s, a) : s \in S, M, s \models K_a \blacktriangle \phi\}$
- $(s,a) \sim'_c (t,b)$ iff $s \sim_c b$ and a = c iff b = c
- $\bullet \ V'(s,a) = V(s)$

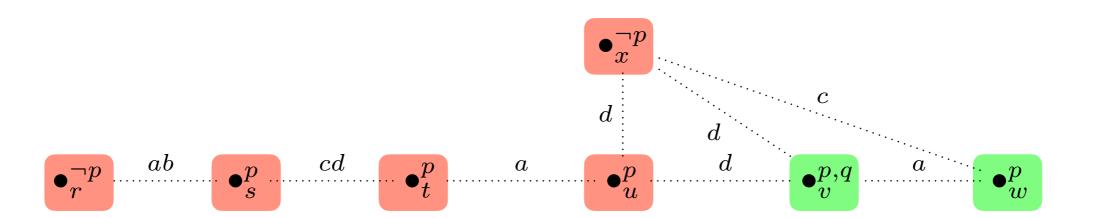
We then let:

$$M, s \models [\phi \ddagger] \psi \Leftrightarrow \forall a \in N, (M, s \models K_a \blacktriangle \phi \Rightarrow M^{\phi \ddagger}, (s, a) \models \psi).$$

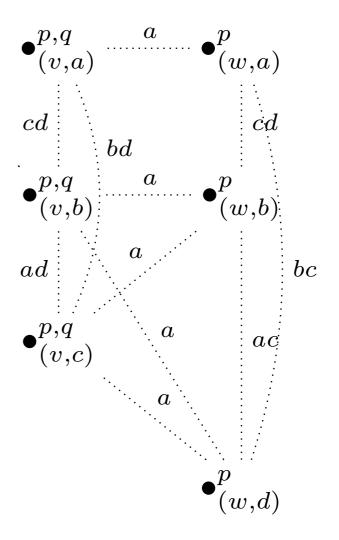


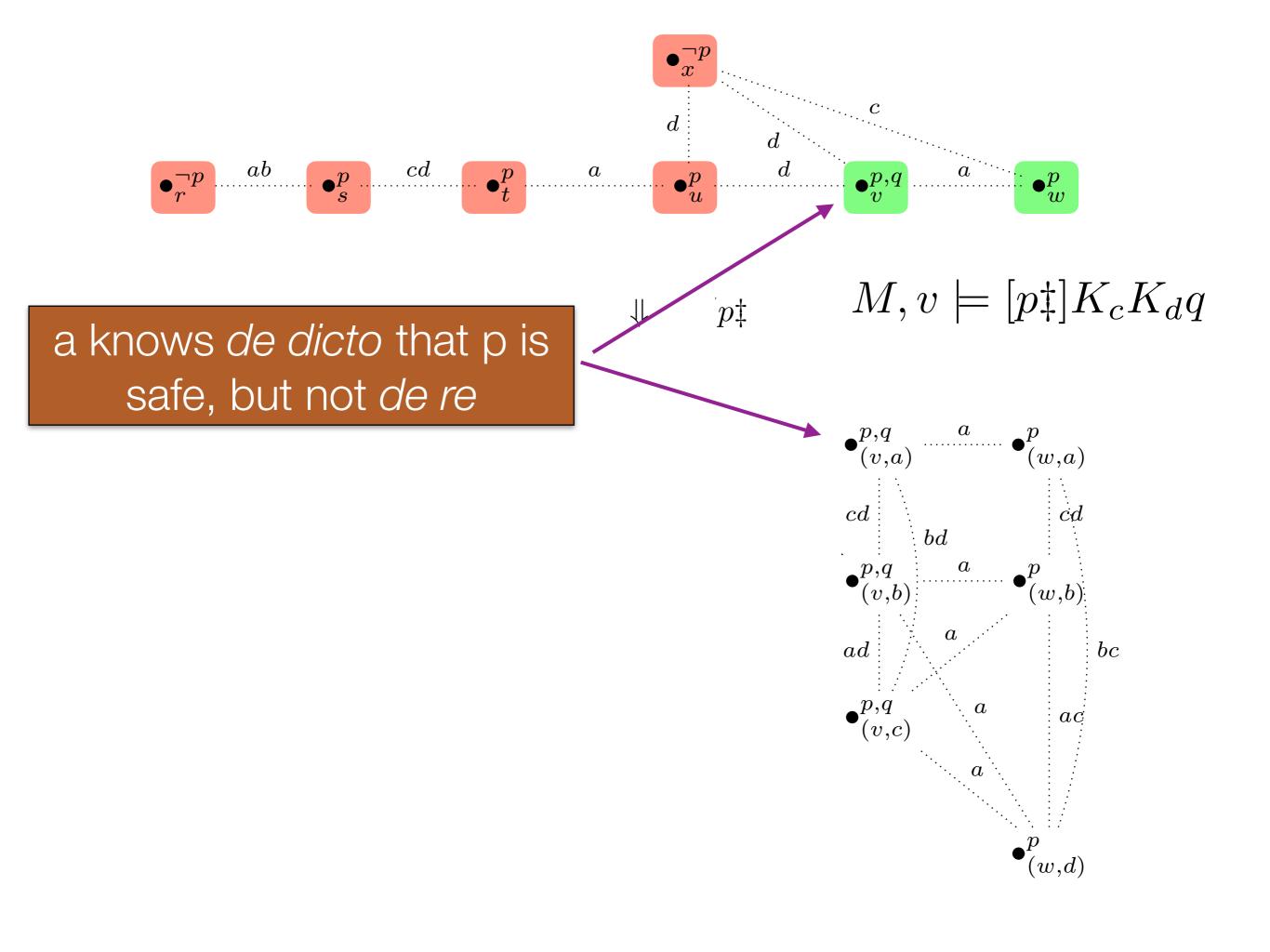


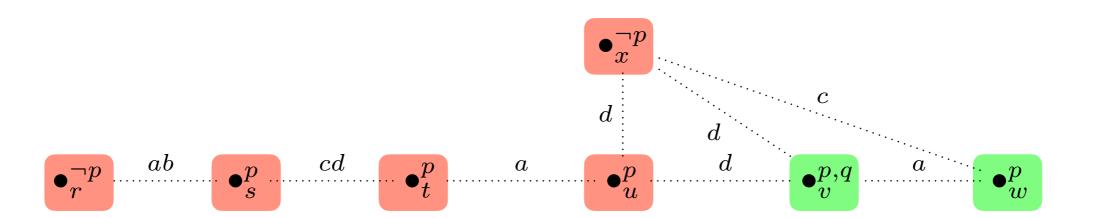




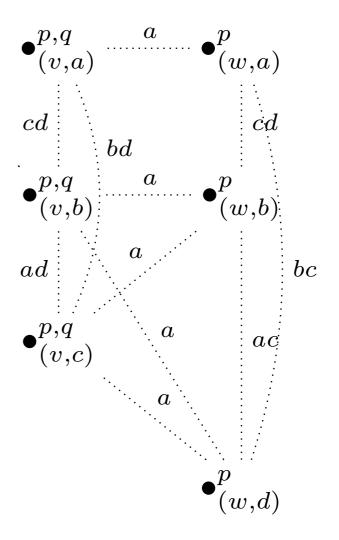
$$\downarrow \qquad M, v \models [p\ddagger] K_c K_d q$$

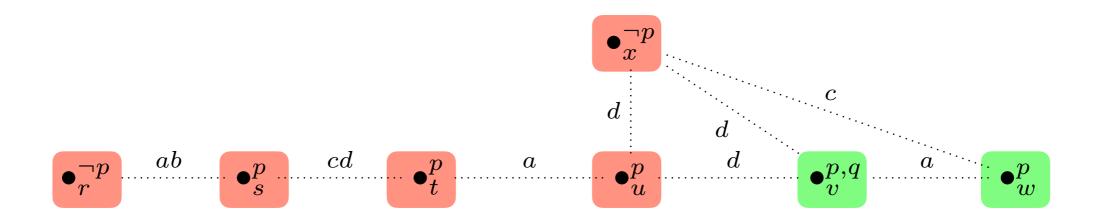






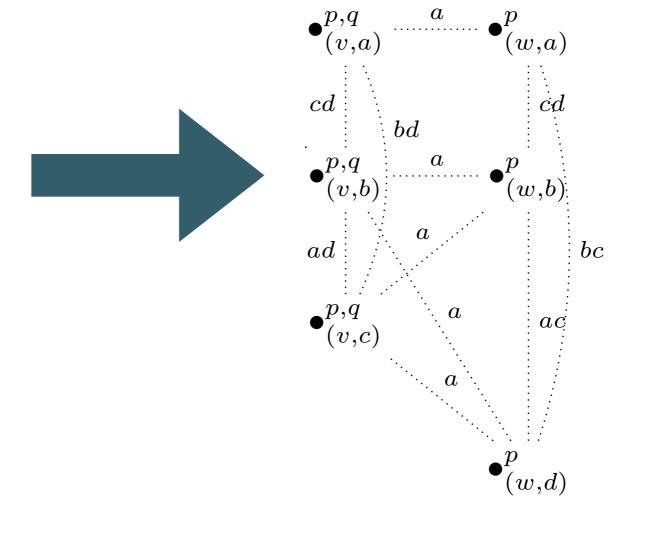
$$\downarrow \qquad M, v \models [p\ddagger] K_c K_d q$$





$$\downarrow \qquad M, v \models [p\ddagger] K_c K_d q$$

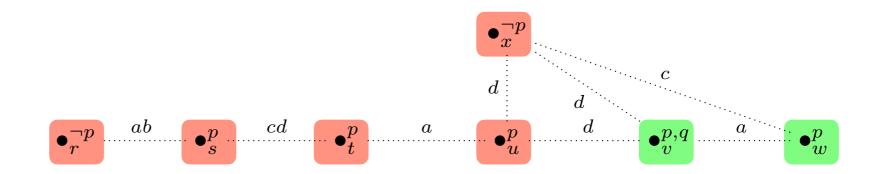
Only the announcer knows who the announcer was



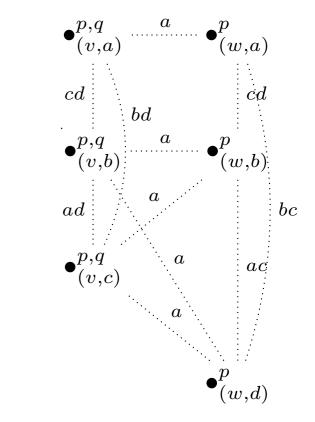
Safety is safe

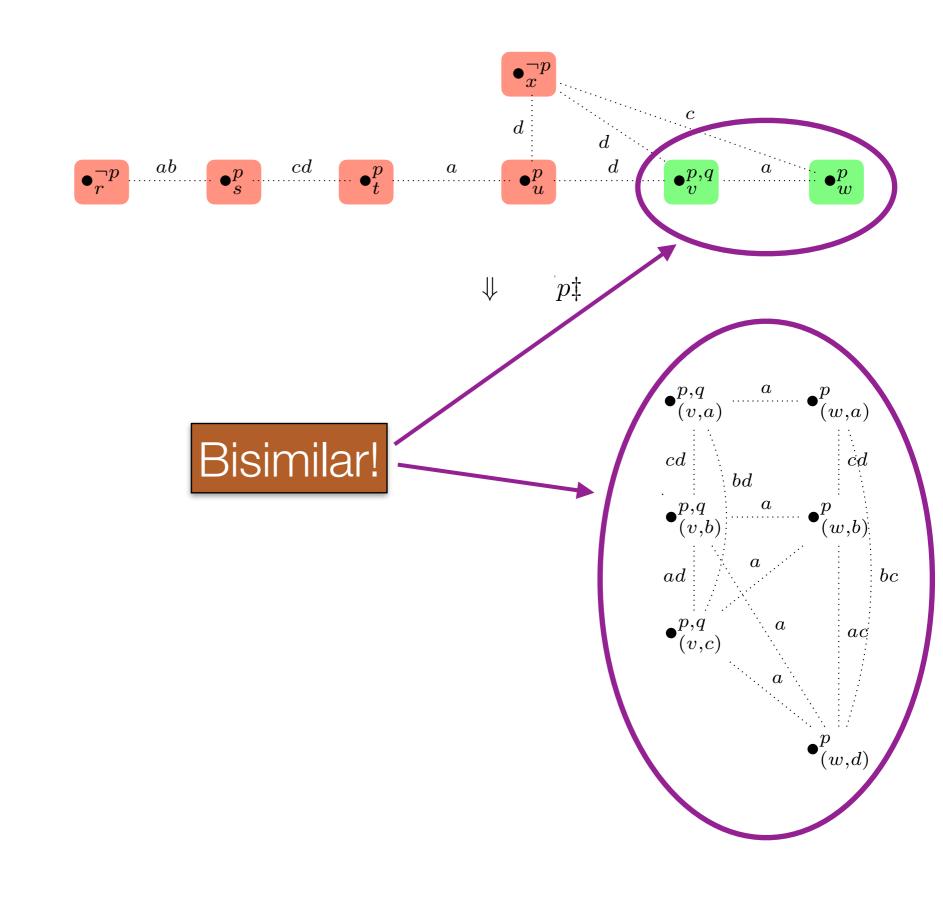
Lemma 1 In any update by a safe pseudo-anonymous announcement, it is common knowledge that no-one except the announcer knows who the announcer is (more technically: in any state (s, a), for any agent $i \neq a$ there is a state (s', a') such that $(s, a) \sim_i (s', a')$ and $a \neq a'$).

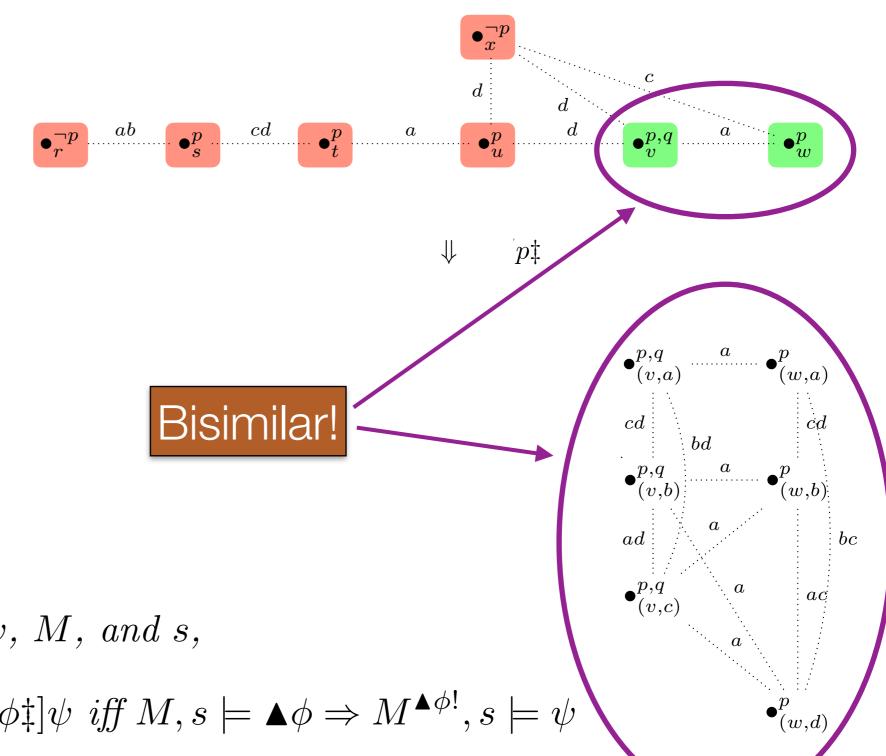
 $K_a \blacktriangle \phi$ is thus both sufficient and necessary for a to safely announce ϕ



p‡

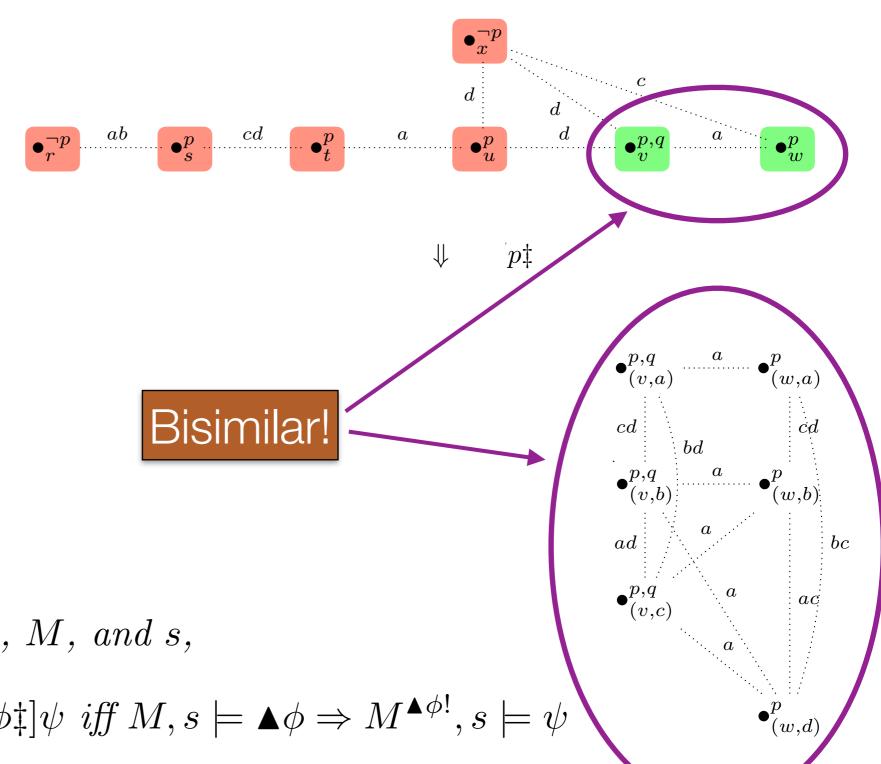






Theorem 1 For any ϕ , ψ , M, and s,

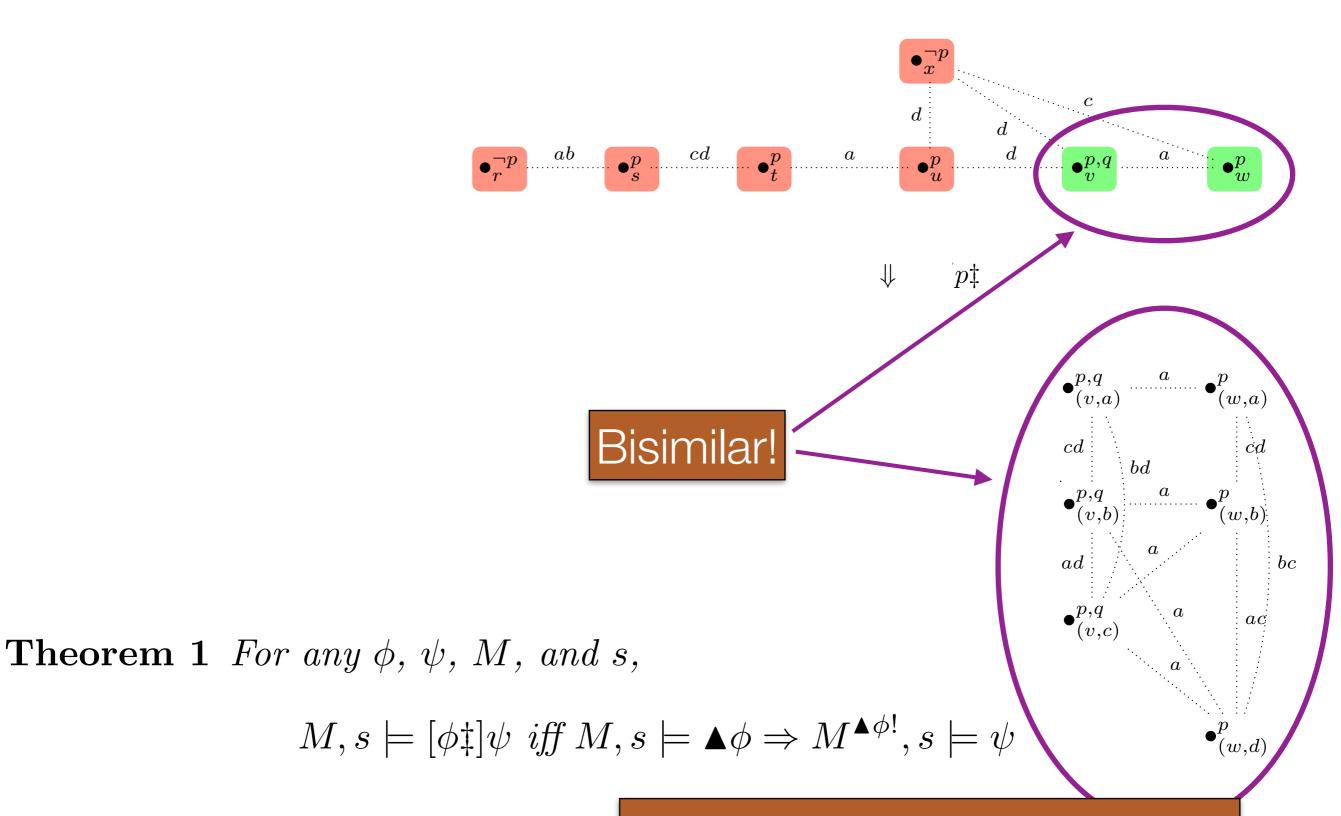
 $M,s\models [\phi \sharp] \psi \text{ iff } M,s\models \blacktriangle \phi \Rightarrow M^{\blacktriangle \phi!},s\models \psi$



Theorem 1 For any ϕ , ψ , M, and s,

$$M,s\models [\phi\sharp]\psi \text{ iff } M,s\models \blacktriangle\phi\Rightarrow M^{\blacktriangle\phi!},s\models \psi$$

$$\models [\phi \ddagger] \psi \leftrightarrow [\blacktriangle \phi !] \psi$$



$$\models [\phi \ddagger] \psi \leftrightarrow [\blacktriangle \phi !] \psi$$

Safe anonymous announcements are public announcements of safety!

Relationship to action model logic

Definition 1 The anonymous event model for N agents and formula ϕ is the action model $\mathsf{M}_{\phi}^{\mathsf{N}} = (\mathsf{S}, \sim, \mathsf{pre})$ where

- \bullet S = N
- $a \sim_b c iff (a = c \Leftrightarrow b = c)$
- $pre(a) = K_a \blacktriangle \phi$

$$M,s \models [\phi \ddagger] \psi \text{ iff } M,s \models \left[\bigcup_{\mathbf{i} \in \mathbf{N}} (\mathbf{M}_{\phi}^{\mathbf{N}},\mathbf{i})\right] \psi$$

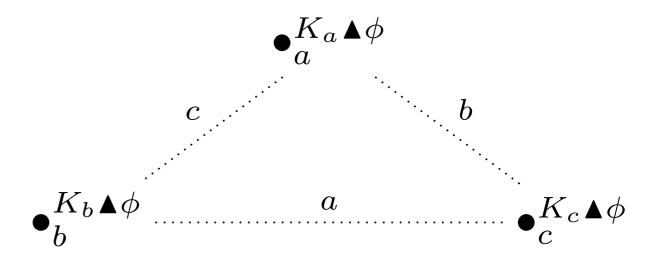
Relationship to action model logic

Definition 1 The anonymous event model for N agents and formula ϕ is the action model $\mathsf{M}_{\phi}^{\mathsf{N}} = (\mathsf{S}, \sim, \mathsf{pre})$ where

$$\bullet$$
 S = N

•
$$a \sim_b c iff (a = c \Leftrightarrow b = c)$$

•
$$pre(a) = K_a \blacktriangle \phi$$



$$M,s \models [\phi \ddagger] \psi \text{ iff } M,s \models \left[\bigcup_{\mathbf{i} \in \mathbb{N}} (\mathbb{M}_{\phi}^{\mathbb{N}},\mathbf{i})\right] \psi$$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi \ddagger]\phi$$

$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi \ddagger]\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi$$

$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi$$

$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid \blacktriangle \phi$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi \mid \blacktriangle \phi$$

$$\sim \text{ELC}$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_{i}\phi \mid [\phi\ddagger]\phi \mid \blacktriangle \phi$$

$$\sim \text{AMLC}$$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi \qquad \text{"in-between"}$$

$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid \blacktriangle \phi \qquad \text{~ELC}$$

$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi \qquad \text{~AMLC}$$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi$$
 "in-between"
$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid \blacktriangle \phi$$
 ~ELC
$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi$$
 ~AMLC

Lemma 1 For any $\phi \in \mathcal{L}_{\ddagger}$, there is a $\phi' \in \mathcal{L}_{\blacktriangle}$ such that for any M, s, it holds that $M, s \models \phi$ iff $M, s \models \phi'$.

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid [\phi \ddagger] \phi$$
 "in-between"
$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$
 ~ELC
$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi$$
 ~AMLC

Lemma 1 For any $\phi \in \mathcal{L}_{\ddagger}$, there is a $\phi' \in \mathcal{L}_{\blacktriangle}$ such that for any M, s, it holds that $M, s \models \phi$ iff $M, s \models \phi'$.

Lemma 1 For any M, s and any ϕ (in any of the languages), $M, s \models \Delta \phi$ iff $M, s \models \neg [\phi \ddagger] \bot$.

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi$$
 "in-between"
$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid \blacktriangle \phi$$
 ~ELC
$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi$$
 ~AMLC

Lemma 1 For any $\phi \in \mathcal{L}_{\ddagger}$, there is a $\phi' \in \mathcal{L}_{\blacktriangle}$ such that for any M, s, it holds that $M, s \models \phi$ iff $M, s \models \phi'$.

Lemma 1 For any M, s and any ϕ (in any of the languages), $M, s \models \Delta \phi$ iff $M, s \models \neg [\phi \ddagger] \bot$.

Corollary 1 $\mathcal{L}_{\ddagger \blacktriangle} pprox \mathcal{L}_{\ddagger} pprox \mathcal{L}_{\blacktriangle}$

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid [\phi \ddagger] \phi$$
 "in-between"
$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$
 ~ELC
$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi$$
 ~AMLC

Lemma 1 For any $\phi \in \mathcal{L}_{\ddagger}$, there is a $\phi' \in \mathcal{L}_{\blacktriangle}$ such that for any M, s, it holds that $M, s \models \phi$ iff $M, s \models \phi'$.

Lemma 1 For any M, s and any ϕ (in any of the languages), $M, s \models \Delta \phi$ iff $M, s \models \neg [\phi \ddagger] \bot$.

Corollary 1 $\mathcal{L}_{\dagger \blacktriangle} \approx \mathcal{L}_{\dagger} \approx \mathcal{L}_{\blacktriangle}$

All equally expressive!

$$\mathcal{L}_{\ddagger} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi$$
 "in-between"
$$\mathcal{L}_{\blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid \blacktriangle \phi$$
 ~ELC
$$\mathcal{L}_{\ddagger \blacktriangle} \quad \phi ::= p \mid \neg \phi \mid \phi \wedge \phi \mid K_i \phi \mid [\phi \ddagger] \phi \mid \blacktriangle \phi$$
 ~AMLC

Lemma 1 For any $\phi \in \mathcal{L}_{\ddagger}$, there is a $\phi' \in \mathcal{L}_{\blacktriangle}$ such that for any M, s, it holds that $M, s \models \phi$ iff $M, s \models \phi'$.

Lemma 1 For any M, s and any ϕ (in any of the languages), $M, s \models \Delta \phi$ iff $M, s \models \neg [\phi \ddagger] \bot$.

Corollary 1 $\mathcal{L}_{\ddagger \blacktriangle} pprox \mathcal{L}_{\ddagger} pprox \mathcal{L}_{\blacktriangle}$

All equally expressive!

It is all about safety!

 $\mathcal{L}_{\blacktriangle}$:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$

$$M, s \models \blacktriangle \phi \Leftrightarrow s \in \bigcup \left\{ S : S \subseteq ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{[x=S]}^M \right\}$$

 $\mathcal{L}_{\blacktriangle}$:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$

$$M, s \models \blacktriangle \phi \Leftrightarrow s \in \bigcup \left\{ S : S \subseteq ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{[x=S]}^M \right\}$$

$$\not\models \blacktriangle(\phi \to \psi) \to (\blacktriangle\phi \to \blacktriangle\psi)$$

 $\mathcal{L}_{\blacktriangle}$:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$

$$M, s \models \blacktriangle \phi \Leftrightarrow s \in \bigcup \left\{ S : S \subseteq ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{[x=S]}^M \right\}$$

$$\not\models \blacktriangle(\phi \to \psi) \to (\blacktriangle\phi \to \blacktriangle\psi)$$

$$\not\models (\blacktriangle \phi \land \blacktriangle \psi) \rightarrow \blacktriangle (\phi \land \psi)$$

 $\mathcal{L}_{\blacktriangle}$:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \blacktriangle \phi$$

$$M, s \models \blacktriangle \phi \Leftrightarrow s \in \bigcup \left\{ S : S \subseteq ||\bigvee_{G \in N^3} E_G(\phi \land x)||_{[x=S]}^M \right\}$$

$$\not\models \blacktriangle(\phi \to \psi) \to (\blacktriangle\phi \to \blacktriangle\psi)$$

$$\not\models (\blacktriangle \phi \land \blacktriangle \psi) \to \blacktriangle (\phi \land \psi)$$

Not normal!

Axiomatising safety: no induction axiom

$$\not\models \blacktriangle(\phi \to \bigvee_{G \in N^3} E_G \phi) \to (\phi \to \blacktriangle \phi)$$

But we do have an induction rule:

If
$$\models \phi \to \bigvee_{G \in N^3} E_G \phi$$
, then $\models \phi \to \Delta \phi$

Axiomatising safety: no compactness

$$\{ \blacktriangle_n \phi : n \ge 0 \} \cup \{ \neg \blacktriangle \phi \}$$

$$\mathbf{\Delta}_n = \phi \wedge \bigvee_{G_1 \in N^3} E_{G_1}(\phi \wedge \bigvee_{G_2 \in N^3} E_{G_2}(\phi \wedge \bigvee_{G_3 \in N^3} E_{G_3}(\phi \wedge \cdots \wedge \bigvee_{G_n \in N^3} E_{G_n}\phi)))$$

Axiomatising safety

all instances of propositional tautologies From $\phi \to \psi$ and ϕ , derive ψ	Prop Modus ponens
$K_{a}(\phi \to \psi) \to (K_{a}\phi \to K_{a}\psi)$ $K_{a}\phi \to \phi$ $\neg K_{a}\phi \to K_{a}\neg K_{a}\phi$ From ϕ , derive $K_{a}\phi$	Distribution Truth Negative introspection Necessitation
	Mix Induction Monotonicity

Axiomatising safety

all instances of propositional tautologies From $\phi \to \psi$ and ϕ , derive ψ	Prop Modus ponens
$K_a(\phi \to \psi) \to (K_a\phi \to K_a\psi)$ $K_a\phi \to \phi$ $\neg K_a\phi \to K_a\neg K_a\phi$ From ϕ , derive $K_a\phi$	Distribution Truth Negative introspection Necessitation
$ \Delta \phi \to \bigvee_{G \in N^3} E_G(\phi \land \Delta \phi) $ From $\phi \to \bigvee_{G \in N^3} E_G \phi$, derive $\phi \to \Delta \phi$ From $\phi \to \psi$, derive $\Delta \phi \to \Delta \psi$	Mix Induction Monotonicity

Axiomatising safety

all instances of propositional tautologies From $\phi \to \psi$ and ϕ , derive ψ	Prop Modus ponens
$K_a(\phi \to \psi) \to (K_a\phi \to K_a\psi)$ $K_a\phi \to \phi$ $\neg K_a\phi \to K_a\neg K_a\phi$ From ϕ , derive $K_a\phi$	Distribution Truth Negative introspection Necessitation
	Mix Induction Monotonicity

Theorem 1 The system is sound and weakly complete.

Completeness: complications

- Non-normality
 - No standard (relational) path semantics!
- Non-compactness
- Fixed-points

Conclusions

- The logic of intentional anonymous public announcements
- Key idea: safety
- Fixed-point operator
- Intentions => more revealing! Similar to in Russian cards.
- Safe anonymous announcements = public announcements of safety
- Expressive power: all boils down to epistemic logic + safety
 - which we axiomatised
- Future work: group knowledge (stronger safety), quantification a la APAL/GAL, self-reference.