Intentionally Anonymous Public Announcements

Thomas Agotnes!2, Rustam Galimullin!, Ken Satoh?, and Satoshi Tojo*

! University of Bergen, Bergen, Norway
2 Shanxi University, Taiyuan, China
3 Center for Juris-Informatics, Tokyo, Japan
4 Asia University, Tokyo, Japan

Abstract. We formalise the notion of an intentionally anonymous public
announcement in the tradition of public announcement logic. An anony-
mous announcement can be seen as in-between a public announcement
from “the outside” (an announcement of ) and a public announcement
by one of the agents a (an announcement of K,p): we get more infor-
mation than just ¢, but not (necessarily) about exactly who made it. In
this paper we assume that it is common knowledge that the announcer
intended to be anonymous. Like in the Russian Cards puzzle, with that
assumption, anonymous announcements in fact reveal more information
than without. We introduce an operator for intentionally anonymous an-
nouncements, and show that in several ways it all boils down to the
notion of a “safe” announcement (again, similarly to Russian Cards).
We model safety via a fixed-point operator that is similar to common
knowledge. Main formal results include comparisons of expressivity and
axiomatic completeness for a language expressing safety.
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1 Introduction

Taken at face value, the title of this paper seems to be an oxymoron. Indeed,
if “public announcement” is taken literally, as in an agent saying something in
front of everyone else, it will not be anonymous. However, anonymous public
communication is almost ubiquitous in our day-to-day lives. Think of posts on
social media and message boards done under a username instead of a real name
of the poster. Or an anonymous letter to an editor of a news outlet. Other
examples include anonymous emails, transactions on a blockchain, whistle blower
reports, and even cultural artifacts created anonymously under an alias, like
Elena Ferrante and MF DOOM.

The type of anonymity we are interested in here focuses on action anonymity,
i.e., the inability of an attacker to identify who performed a given action (also
sometimes referred to as unlinkability in the literature [22]). This is in contrast
to data anonymity, i.e., the inability of an attacker to know the identity of a
subject in an anonymised database, e.g., in medical records (see, e.g., [9]). One
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of the standard requirements of both types of anonymity is that they satisfy k-
anonymity [25], which intuitively means that a data record or an action cannot
be distinguished from at least k — 1 other records or actions. It is clear that in
the case of public communication by someone in a group of agents, we should
have at least 3-anonymity. Indeed, if a public announcement is so specific that
it could be made only by two agents (and these two agents know that), then the
non-announcing agent would be able to deduce the identity of the announcer. In
the literature, such a scenario is called “background knowledge attack” [17].

In this paper we formalise anonymous public announcements inspired by
public announcement logic (PAL) [23], an extension of multi-agent epistemic logic
with constructs of the form [p!]¢) intuitively meaning that after ¢ is truthfully
announced, 1 is true. In PAL the announced formula ¢ does not have to actually
be known by any agent in the system — the identity of the announcer is left out
of the picture. If the announcer indeed is one of the agents a in the system,
the announcement in fact contains more information: in that case it would be
modelled by the announcement K,p!. In this paper we formalise anonymous
public announcements, conceptually somewhere in-between ¢! and K,p! — we
get more information than just ¢ but less than K,y for a specific agent a. We
make an additional crucial assumption: that it is common knowledge that the
anonymous announcer intended to be anonymous, i.e., to not reveal her identity.
Similarly to the Russian Cards puzzle [7], we shall see that that assumption
actually means that the announcement reveals more information. To this end, we
introduce and study an intentionally anonymous public announcement operator
[p1], such that [p1]y intuitively means that after ¢ is anonymously announced by
some agent, no matter who, and it is common knowledge that the announcement
as intended to be anonymous, 9 is true.

Reasoning about anonymity based on (variants of) epistemic logic has been
studied in [26, 11], with k-anonymity being discussed in [11]. Building on the
runs-and-systems approach of [11], further extensions focus on privacy and onymity
[27, 28] and electronic voting [18]. A knowledge-based approach to data anonymity
was presented in [15]. Other logical approaches to anonymity and privacy in-
clude [24,14,32,6]. The themes of anonymity and privacy are also related to
the research on secrets in multi-agent systems (see, e.g., [12, 21,20, 31]). None
of these approaches model anonymous announcements. Finally, an approach to
anonymity based on dynamic epistemic logic (DEL) [8] was presented in [29],
where the authors consider scenarios of secret communication between agents
in a system. Such secret communication is captured by private announcements,
as special type of action models [5]. In this setting, verifying whether secret
communication remains secret boils down to model checking an epistemic for-
mula in the resulting updated model, i.e. the model that is obtained after an
application of a dynamic operator. While our approach is also DEL-based, there
are two major differences. First, we model anonymous public communication, as
opposed to private communication. Second, we tackle the crucial issue of inten-
tional anonymity, where it is common knowledge that only safe announcements
are made.
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We start out by introducing the machinery of EL and DEL in Section 2.
In Section 3, we formalise intentional anonymous announcements as well as in-
troducing a safety modality, which is a fixed-point modality somewhat similar
to common knowledge. In Section 4 we look at expressivity and show that, in
several senses, safety is fundamental, and in particular that the logic with the
intentionally anonymous announcement operators can be reduced to epistemic
logic with safety (but not to EL, PAL or, in general, DEL without the safety
modality). In Section 5 we give a sound an complete axiomatisation of the latter.
We end with a discussion in Section 6.

2 Background

We give a brief review of relevant background concepts and refer the reader to
[8] for further details. Let N be a finite set of agents, and P be a countable set
of propositional variables. All logics in this paper are interpreted on epistemic
models.

Definition 1. An (epistemic) model is a triple M = (S,~,V), where S is a
non-empty set of states, ~: N — 2°%% is an equivalence relation for each i € N,
and V : P — 29 is the valuation function. For s € S, a pair M,s is called a
pointed (epistemic) model.

Definition 2 (Action Models). Let £ be a language defined over the signature
(N, P). An action model is a triple M = (S, ~, pre), where S is a non-empty set
of states, ~: N — 25%5 is an equivalence relation for eachi € N, andpre : S — L
is the precondition function. Fors € S, we will call a pair M,s a pointed action
model.

Definition 3. Languages of epistemic logic (Lg ), public announcement logic
(L), and action model logic (Lg) are defined by the following BNFs:

L ¢u=pl-e|(eNe)]| Kip

L pu=plopl(ene)| Kip|lelle

Lo pu=pl-el(@ne) | Kigllrly m:=(M;s)|rUr
where p € P, i € N, and (M,s) is a pointed action model with a finite set of
states S, and such that for all s € S, the precondition pre(s) is some p € Lg

that was constructed in a previous stage of the inductively defined hierarchy. We
write K;p for =K;=p, and when G € N we write Egp for \;cq Kip.

The semantics is now defined as follows.

Definition 4. Let M,s = (S,~,V) be a model, p € P, i € N, and (M,s) be an
action model.
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M,skE=p iff s € V(p)

M,s E g iff M, s b=

M,sEoeAyYy iff M,sE ¢ and M,s =1

M,s = Ko iff M,t =@ for allt € S such that s ~; t
M,sl= [y iff M,s = implies M, s |= ¢

M,s = [M;sle iff M, s |= pre(s) implies (M @ M, (s,s)) = ¢
M,s = [rUplp iff M,s = [r]p and M, s |= [plp

We write [@]ar for the set {s € S | M,s = @}. The updated model M¥" is
(S¢', ~?L Ve where 8P = [p]ar, ~F'=~i N(S¥' x S¥') for alli € N, and
Ve (p) = V(p) N [@]ar for all p € P. The updated model M @ M is (S',~' V"),
where S" = {(s,s) | s € S,s€S,M,s = pre(s)}, (s,s) ~} (t,t) iff s ~; t and
s~ t, and (s,s) € V/(p) iff s € V(p). We call a formula ¢ valid, or a validity,
if for all M, s it holds that M, s = ¢.

Definition 5. Let M' = (S1,~1, V1) and M? = (S%,~2,V?) be two epistemic
models. We say that M and M? are bisimilar (denoted M = M?) if there is
a non-empty relation Z C S* x S?, called a bisimulation, such that for all sZt:

Atoms for allp € P: s € V(p) if and only if t € V3(p),
Forth for alli € N and u € S' such that s ~} u, there is a v € S? such that
t ~? v and uZv,
Back for alli € N and v € S? such that t ~% v, there is a u € S* such that
Lu and uZv.

s~
We say that MY, s and M?,t are bisimilar and denote this by M, s = M?,t if

there is a bisimulation linking states s and t.

It is a standard result that M' s < M? t implies M', s = ¢ if and only if
M2t pfor p € Lxk UL ULg (see, e.g, [8, Chapter 5]).

Definition 6. Let £, and Lo be two languages defined over the same class of
models, and let p € L1 and ¥ € Lo. We say that ¢ and ¥ are equivalent, when
for all M,s: M, s = ¢ if and only if M,s |= 1. If for every ¢ € Ly there is an
equivalent 1 € Lo, we write L1 <X Lo and say that Lo is at least as expressive as
L. We write L1 < Lo iff L1 < Lo and Lo £ L1, and we say that Lo is strictly
more expressive than L£q. Finally, if £L1 < Lo and Lo < L1, we say that L1 and
Lo are equally expressive and write L1 ~ L.

It is well known that £, ~ Lg ~ Lk [8, Chapter 8].

3 Intentionally Anonymous Public Announcements

An anonymous public announcement of ¢ (made by an agent in the system) is
clearly not identical to a standard public announcement of ¢, as in the latter
case an announced formula may not even be known to any of the agents. Thus a
necessary precondition for an (anonymous or not) announcement made by some
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Fig. 1. Three-agent epistemic model with the agent b’s relation being the identity.

agent a would be that a knows ¢, i.e. that K . However, this is not sufficient
to guarantee anonymity: for anonymity we also need someone else to know ¢ —
in fact, as discussed in the introduction, we need at least 3-anonymity. We are
modeling announcements that are intentionally anonymous in the sense that it is
common knowledge that an agent will only make the announcement if she knows
that it is safe. We will discuss in detail what “safe” means, but the intuition is
that it is safe for an agent to make an announcement if somebody else could have
made it. One subtlety is that the potential announcement by that “somebody
else” also should be safe, so the definition has a recursive (or even circular!)
flavour. To make our intuitions more precise, consider model M in Figure 1.

— In state s, all three agents a, b and ¢ know p

— In state s, a considers it possible that we are in state t, where it would not
be safe for her to announce p since then b would know that it was her. Thus
it is not safe for a to announce p in s.

— In state s, ¢ knows that it is not safe for a to announce p in s, and thus it is
not safe for ¢ either: if she announces p in s, b would know that it was her
since b knows that it is not safe for a to announce p in s.

— It is thus not safe for b to announce p in s either.

— It is not safe for a or b to announce p in ¢ (only two agents know p).

— p cannot be announced by anyone in u.

Thus, no safe announcements can be made in this model. To see when it is
actually safe for agents to make anonymous announcements, we need to pro-
vide precise definitions of what we mean by safety and intentionally anonymous
announcements.

As we have seen, it is not enough that three agents know ¢ to ensure that ¢
can be safely announced by any of them; those three agents also need to know
that ¢ is safe, i.e., that three agents know ¢ and that ¢ is safe . ..and so on. This
clearly has the flavour of common knowledge. However, the existence of a group of
three different agents having common knowledge of ¢, M, s =V, 2. Cla,b,c} ¢
is sufficient but not necessary for ¢ to be safe in s. A weaker condition would also
be sufficient: we don’t need the three agents to know that the same three agents
can safely announce . It might be, for example, that a considers it possible that
a, b and d safely can announce .

In order to define that weaker condition, let us recall the fixpoint defi-
nition of common knowledge (see, e.g., [10]). It is well known that Cgyp is
the greatest fixpoint of Eg(p A x) w.r.t. a variable x not occurring in ¢, or,
more accurately, given an epistemic model M, [Cgpla is the greatest fix-
point of the function f(S) = [Eg(p A x)]]‘l‘//[[x:s] where [[w]]]‘\//l[mzs] is the ex-
tension of ¢ in the model M where the valuation function has been changed
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Fig. 2. Four-agent epistemic model M (left), with updated model MP* (right).

so that the extension of the variable z is S. The greatest fixed-point of mono-
tonic functions is equal to the union of all post-fixed points, so we have that:

[Cavl =U{S: 5 C [Balp A )]t}
We now define a similar, weaker, notion of common knowledge in order to

capture safety. Let us introduce a safety operator: Ap intuitively means that ¢
is safe in the current state. We let, where N® = {{a,b,c} | a,b,c € N;a # b,a #

c,b#c}:

M,s):MpiffseU{S:Sg[[ \/ Eg(cp/\x)]]ff_s]}.

GeNs3

In other words, Ay is the greatest fixpoint of \/ ;¢ ys Eg(¢ A x). Thus, in par-
ticular we have that
=ape \/ Ec(enayp),
GEN?3
and, similarly to the iterative definition of common knowledge, we have the
following.

Lemma 1. M,s = Ap iff M,s |= ¢ and M,s = \/ g cns Ec,p and M, s =
\/G1€N3 EG1(<P/\\/G2€N3 EGQ@) and ---.

While Ap means that ¢ can safely be announced, K,Ay means that ¢ can
safely be announced by a. It is easy to see that: M, s = K,Ap iff M, s = ¢ and
M, s ': vG1EN3,aEG1 EG1§0 and M, s ': \/G1€N3,GEG1 EG1 ((P A \/G26N3 EG2<)0)
and ---.

Finally we can introduce an operator for intentionally anonymous announce-
ments, [¢1], with the corresponding model update defined as follows.

Definition 7. The update of epistemic model M = (S, ~, V') by the intentionally
anonymous announcement of @ is the epistemic model M¥* = (S',~', V') where:

~ 8'={(s,a): s € S,a € N,M,s = K,Ap}

— (s,a) ~L (£,0) iff s~.tanda=c iffb=c
— V'(s,a) =V (s)
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Intuitively, in the updated model it is common knowledge that someone has
(truthfully) intentionally anonymously announced ¢. A state (s, a) corresponds
to that someone being a, in state s of the original model. The precondition is
that a knows that ¢ is safe. An agent can only discern between a situation (s, a)
where a made the announcement and a situation (¢,b) where a different agent
b did, if she could already discern between s and t before the announcement or
she is exactly one of a or b. We then let:

M,s = (il & Ya € N, (M, s | K.hp = M? (s,a) E9)

— after the intentionally anonymous announcement of ¢, 9 is true no matter who
the announcer was.

Thus, we have introduced two new operators: A and [¢f]. Do we want both in
the formal language? Let’s consider all three combinations, which will be useful
later®.

Ly pu=pl-olone|Kip| el
Ly pu=pl-olene|Kip|Ap
Liaypu=pl-plone|Kip|[otle| A

Let’s look at some examples. In the model in Figure 2:

— M, s |= —Ap. p can’t be safely announced in s: only two agents know p.

— M,t = —Ap. While all four agents know p in ¢, they do not all know that
three agents know p: ¢ and d consider it possible that only two agents know
p. In other words, even though they know p, they do not know that it can
be safely announced.

— M, u |= —Ap. Three agents, a, b and ¢, know p. They also know that at least
three agents know p. But they still do not know that p is safe: they do not
know that at least three agents know that at least three agents know p.

— M,v = Ap and M,w |= Ap. p can be safely announced in v and in w. In
fact, {w, v} is the greatest fixed-point of \/ ¢ ys Ea(e A x).

— M,v = K,Ap. p can be safely announced by a in v.

— Even though a knows that p is safe in v, she does not know why. She considers
it possible that we indeed are in v in which it would be safe for a, b and ¢ to
announce p, or in w in which it would be safe for a, b and d to announce p,
but she doesn’t know which it is. We can say that she knows de dicto that
p is safe, but not de re.

— M,v = [pt]K.K4q. After an intentionally anonymous announcement of p in
v, ¢ knows that d has learned that q is true.

— In every state in the updated model, only the announcer knows who the
announcer was.

The latter point is no coincidence: safe announcements are indeed always safe.
5 Ly is well defined without A in the syntax, even though A is used in the seman-

tic condition for [p}]. That semantic condition could of course be written without
explicitly mentioning A.
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Lemma 2. In any update by an intentionally anonymous announcement, it is
common knowledge that no-one except the announcer knows who the announcer
is. Formally, let M be a model, let M#* = (S',~', V') be the updated model after
the intentionally anonymous announcement of ¢, and let (s,a) € S'. Then for
any agent i # a, there is a state (s',a’) € S’ such that (s,a) ~} (s',a’) and

7
a#a.

Proof. Let M be a model. Let (s,a) be a state in M%* and let d # a. By
definition, M, s = K,A¢p, so there are b, c such that {a,b,c} € N* and M, s |=
Kyap A K Ap. Le., (s,b) and (s,c) are states in M*#*. Either b # d or ¢ # d
(or both); assume the former. Since all of a, b and d are different, and ~y is
reflexive, we have that (s,a) ~/ (s,b). O

Thus, K,Ap is a sufficient condition for a safe anonymous announcement:
after it is announced, no one, apart from a herself, will know who the announcer
was. It is also necessary, in the sense that a must know that at least two other
agents know ¢, and must know that those two agents know that at least two
other agents know ¢, and so on, i.e., it is the case that K,Ap. That justifies the
definition of the model update from an intentionally anonymous announcement:
that K,Ap holds for some a is the information that is revealed.

The reader might have observed that the updated model MP* in Figure 2 is
bisimilar to the submodel of M it is projected on, i.e., the submodel consisting
of states v and w — exactly the submodel where K,Ap holds for some a. This
is, in fact, always the case. In the following lemma the model update MA¥" is
defined like for PAL (Section 2).

Lemma 3. Foranyp, ¥, M, s: M,s =[] iff (M,s = Ap = MAY s = 1/1).

Proof. We first show that M®* and MA¥' are bisimilar. Let Z be such that
(s,a)Zs iff s =5, and let (s,a)Zs. Atoms is straightforward. Forth is as well:
if (s,a) ~¢ (t,b), then s ~. t by definition. For Back, let s ~ t. First, consider
that ¢ # a. Since t is in MA?', M,t = Ap. Thus, there are different b,d,e € N
such that Mt = KyAp A Kghp A K Ap. At least one of b, d, e is different from
both a and ¢. Say, b. Thus (s,a) ~. (t,b). Second, consider that ¢ = a. Since
M,s = K.A and s ~ t, we also have that M,t = K.A. Thus (t,¢) is in M¥%,
and we have that (s,a) ~. (¢, c).

Note that satisfaction of A¢ is invariant under bisimulation (this follows,
e.g., from Lemma 1). Then we have that M,s | [p}]y iff for all a, M,s |=
K,Ap implies M**, (s,a) = iff for all a, M, s = K,Ag implies MA%' s |= 1.
We argue that this is equivalent to M, s = Ay implies MA¢' s = 1. For the
implication from left to right, if M, s |= Ay then M,s = K,Ay for some a by
the fixed-point property of A (actually that holds for three different a € N).
From M,s = K, Ap = MA¥' s |= ) for all a, we get that MA¥' s |= ). For the
other direction, let a € N. If M,s = K,Ap, then M, s = Ay by reflexivity, so
MA¥ s = ). O
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As an immediate corollary of Lemma 3 we have that if we allow public announce-
ment operators in the language:

E ety < [a@!]y.

So, safe anonymous announcements are exactly public announcements of safety.
Thus, we get a “simpler”, logically equivalent semantics. The existence of the
original semantics and the fact that it corresponds exactly to this alternative se-
mantics is of course still crucial: it is what ensures that safety is safe (Lemma 2)°.
It also means that PAL extended with A can express intentionally anonymous
announcements. However, as we shall see when we now move on to comparing
expressive power of the languages introduced above, even less is needed.

4 Expressive power

There is a close relationship between intentionally anonymous announcements
and action models. Indeed, consider the language Lg, of action model logic
extended with the safety modality. The semantics of ¢ given above is equivalent
to a certain class of action models of Lga: anonymous action models.

Definition 8. The anonymous action model for N and formula ¢ is the action
model M} = (S, ~, pre) where S = N, a~cb iff (a =c < b = c), and pre(a) =
K.Ap.

An intentionally anonymous announcement now corresponds to the union of
events (Mg7 a) for all agents a. The proof of the following is straightforward.

Lemma 4. For any pointed epistemic model M, s and formulas ¢ and ¥, M, s =
et iff M, s = [Uien (M3, )] .

Consider now the three languages with safety and/or intentional anonymous
announcements: L1, , L4 and Ly. The first is similar to that of action model logic
with common knowledge Lgc. In the same sense, £, is similar to epistemic logic
with common knowledge Lk . L; is in-between: it would correspond to Lgc but
where common knowledge appears only in the preconditions of action models.
It is known that Lgc is strictly more expressive than Lx¢ [8, Chapter 8|; in
particular expressions of the form [M, s]Cgp cannot always be reduced to an
L ¢ formula. Nevertheless, we shall now see that, perhaps contrary to intuition,

5 We used invariance under standard bisimulation as a technical tool to establish the
correspondence. Of course, when we say that “only the announcer knows who the
announcer is” and so on, we implicitly mean that agents can potentially discern
between states (s,a) and (s,b), even though, as shown above, they are bisimilar.
An extended notion of bisimulation could be introduced to take into account this
assumption, but it is in any case not picked up by the logical language. It is of
course also possible to think about ways this distinction could be picked up by the
language, e.g., by special atoms, but that is complicated by the possibility of iterated
announcements leading to states like ((s,a),b) and so on.
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all three languages Lia, Lo and Ly are actually equally expressive. Let us start
with the “intermediate” language £;. By Lemma 4, every ¢} has an equivalent
action model with preconditions K,Ay. Because preconditions contain the A
modality, we cannot translate formulas of Lg, into Lk since we do not have a
reduction axiom for Ap. However, we can reduce formulas of Lg, to formulas
of L,.

Lemma 5. £; < L,.

Proof. Consider the language Lg,, which is like Lg, but with the restriction
that A is not allowed in the scope of a [r] modality. It is easy to see that
the reduction axioms for Lg [8, Chapter 6] are still valid for this extended
language. Take a ¢ € Lj, and let ¢ be the corresponding Lg, formula by
replacing every [¢1] with the corresponding action model expression [r] (Lemma
4). Now we recursively reduce the number of occurrences of [7] modalities in
1 by starting with an outermost one, i.e., one that is not in the scope of any
other. Use the corresponding reduction axiom of Lg, and repeat until all [r]
modalities are gone. Every time we use a reduction axiom we might introduce a
new subformula K,A%’, but never in the scope of a [r] modality since we started
with the outermost one. Thus, every time we use a reduction axiom the result
is in Lg,, and when we are done the result is in pure epistemic logic extended
with A, ie. in £,4. a

Thus, £; can be “reduced” to £, (even though the latter is not a sub-
language). The second “surprise” is that the A operator can actually be expressed

by [¢1].
Lemma 6. For any M,s and any ¢ € Lo, M,s = Ay iff M, s = —[p]f] L.

Proof. M,s = —[pi]L iff there is an @ € N such that M,s = K,Ap and
M%* (s,a) = L iff there is an a € N such that M, s = K,Agp iff (by reflexivity
in one direction and the fixed-point definition of A in the other) M, s = Ap. O

Corollary 1. Ly, = Ly = L,.

Thus, yet again we see that dynamic announcement operators can actually
be expressed in a purely static language: £,. We thus move on to axiomatising
safety.

5 Axiomatisation of safety

Observe that A does not distribute over implication: = A(p — ¥) — (Ap —
Av). In particular, \/ ;c ys Ea(¢ — ) and \/ ;¢ ys Egyp does not imply \/ ¢ ys Eatp
— it might not be the same G in the first two cases. For similar reasons the con-
junctive closure axiom, (Ap A AY)) — A(p A1) does not hold. This is similar

to somebody knows [2], but unlike most other group knowledge operators which
are normal modalities. The other direction of conjunctive closure, monotonicity,
A(p ANY) — (Ap A AY), does hold.
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all instances of propositional tautologies Prop

From ¢ — v and ¢, derive ¢ Modus ponens

Ko(o = ) = (Kap — Kat)) Distribution

Kap = Truth

—Kop = Ko Kap Negative introspection
From ¢, derive Kyp Necessitation

Ao = Vgens Ec(e A Ap) Mix

From ¢ — /¢ ys Egyp, derive ¢ — Ap Induction rule

From ¢ — 1), derive A — AY Monotonicity rule

Table 1. The proof system SA.

The axiomatic system SA for £, is shown in Table 1. The first two parts form
a standard axiomatisation of propositional logic and the individual knowledge
operators. The Monotonicity rule combines the monotonicity axiom and the
replacement of equivalents rule standard in weak modal logics. We note that
necessitation for A, from ¢ derive Ay, follows (we have AT from the Induction
rule). The Mix axiom (or fized-point aziom) says that Ay is indeed a fixed-point
of Vgens Ea(p A ). Finally, the Induction rule give us a way to derive Agp.
Mix and the Induction rule can be seen as adaptions of similar axioms/rules for
common knowledge, see, e.g., [10, 8].

We will use the following shorthand:

ap=0on \ EBaen \/ Ea,(en \| Eaen---A \ Ea.p)
G1EN3 G2eN3 G3eN3 G,ENS3

Thus, Ao = ¢, A1 = ¢ A Vg, ens Ec, , and so on, and we have that M, s =
Ap iff M, s = A, for all n.

It is straightforward to see that the Mix axiom is valid and that the Induction
and Monotonicity rules preserve validity, and thus that the following holds.

Lemma 7. SAis sound.

We now prove that SA is also complete. Similarly to epistemic logic with
common knowledge, the logic is not compact. For example, {A,p : n > 0} U
{—Ay} is not satisfiable, but any finite subset of it is. Thus, we have to settle
for weak rather than strong completeness. To that end, we adapt the standard
technique for common knowledge of defining a finite canonical model based on
the finite syntactic closure of some formula. This is complicated by the fact
that A is not normal: in the axiomatisation we have the (weaker) monotonicity
rule instead of the K axiom for A. The consequence, aside from the fact that we
cannot rely on distribution over implication like in proofs for common knowledge,
is that there is no normal relational semantics for A (like “¢ is true on all states
reachable by a G-path” for Cap). We now define an alternative definition of the
semantics and show that it is equivalent, which we will use in the completeness
proof.
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Given a model M, a group assignment function for M is a function f: .S —
P(N) such that f(s) € N3 or f(s) = ) for each s, i.e., assigning a group of three
agents to some of the states, such that for all s,¢ € S and i € f(s), if s ~; t then
f(t) # 0. The idea is that f works as an assignment of groups of three agents to
certain states, such that if we follow the accessibility relations for those agents, f
again assigns a group of three agents to those states, and so on. An f-consistent
path in M is a finite sequence of states sps1Sg - - - Sy, such that for all 0 < i < m,
S; ~q Si+1 for some a € f(s;). We say that ¢ is true on a path if it is true in
every state on that path.

Lemma 8. M,s = Ay iff there is a group assignment function f such that
f(s) £ 0 and o is true on every f-consistent path starting in s.

Proof. Left-to-right: let M, s = Ap. Define f as follows: for any state ¢, f(t) = G
for some G € N3 such that M,t = EgAy if such a G exists, f(t) = 0 if not.
If there are several such G chose any of them. We must show that f is indeed
a group assignment function. Let ¢ € f(s') and s’ ~; t; we must show that
f(t) # 0. Since i € f(s'), there is a G € N3 such that M, s’ = EgAp and i € G.
Thus M,s = K;Ap and M,t = Ap. By Mix, M,t |= Ec Ap for some G', so
f() # 0. Finally, f(s) # (0 from M, s = Ay and Mix.

We proceed by induction on the length of any f-consistent path starting in s.
The base case is immediate. Consider an f-consistent path sq---s,5,11 where
so = s. By the induction hypothesis sq,--- ,s, are p-states. Since s, ~; Spi1
for some i € f(s,) and M, s, |= Ej(s,)Ap, we thus also have M, 5,11 |= ¢.

Right-to-left: by contraposition. Assume that M,s = Ay, i.e., that M, s [~
A, p for some n. Let f be a group assignment function such that f(s) # 0. We
must show that there is a f-consistent path starting in s where ¢ is not true.

We have that M, s |= ~¢V Ag,ens Viyea, K (79 V Agens Vigea, Kia (09 V
V' Ag,ens Vi, ea, Ki,~p)). Thus, there is a k < n such that

vk AV EG AV Ea AV e

G1EN3 i1€Gy G2EN3 126G GrLEN3 iLeGy

Hence there is a path sgs; - - - sp+1 where: sg = s, so ~;, s1 for some i; € f(sp),
51 ~i, S for some iy € f(s1), -+, Sp ~iy,, Sk41 for some ipy1 € f(sg), such
that M, sk41 = —p. This is an f-consistent path. O

We now proceed with defining the finite canonical model, and proving a truth
lemma. We adapt the standard proof for common knowledge (see [8, Chapter
7).

Definition 9. The closure cl(vy) of a formula v is the smallest set that contains
all subformulas of ~y, is closed under single negations, and that contains Eg Ap
for all G C N whenever it contains Ap.

" There are also other complications, in addition to the lack of normality, includ-
ing that the correspondent to the induction aziom for common knowledge, A(p —
Veens Eap) = (o — Ap), is not valid. We instead use a variant of the induction
rule for common knowledge, used in, e.g., [10].
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The closure of any formula is finite. As usual we say that a a set of formulas
I' is maximal consistent in cl(v) iff I" C ¢l(y), I" is consistent, and there is no
consistent I C cl(vy) such that I' C I"". When A is a finite set of formulas we
write A for Asc A 6.

The canonical model is defined as follows.

Definition 10. The canonical model for some formula v is MY = (§7,~7,V7)
where: S7 is the set of all sets of formulas mazimal consistent in cl(~), I' ~7 A
i {Kip: Kipe 't ={Kijp: Kijp€ A}, and VY (p) ={ € S":pel}.

This definition of the canonical model is identical to the one used for common
knowledge in, e.g., [8], except that the closure is wider. Many of the properties
of that model, like deductive closure of maximal consistent sets in cl(vy), carry
over, and we only need to focus on the following property for the A modality. A
p-path in the canonical model is a path I'yI7 --- where ¢ € I for every i.

Lemma 9. For any vy and I' € S7 and Ay € cl(v), Ap € I iff there is a group
assignment function f such that f(I') # 0 and every f-consistent path from I’
i M7 is a p-path.

Proof. Left-to-right: let Ap € I'. Define f as follows: for any A € S7, f(A) =G
if EcAp € A for some G € N3 and f(A) = () otherwise. If there are several such
G, chose one. Consider a A such that f(A) # 0 and A ~) A’ for some i € f(A).
We must show that f(A’) # 0. Since K;Ap € A, K;Ap € A’ by definition of
~7, and thus Ap € A’ by the Truth axiom, and Ec Ap € A’ for some G’ by
Mix and the fact that Eq A € cl(y). Finally, f(I") # 0 follows from Mix and
definition of the closure.

We must show that every f-consistent path from I" is a ¢-path. The proof is
by induction on the length of the path. For the base case, we have that ¢ € I’
from the Mix and Truth axioms. For the induction step, consider an f-consistent
path Iy« I, 141 where ¢ € I for all j <n. From f-consistency we have that
I, ~) Ih41 for some i € G for some G € N3 such that EqAp € I,. It follows
from the definition of Nz that K;Ap € I},41, and thus that Ap € I, 1 from
the Truth axiom, and thus that ¢ € I, from the Mix axiom and Truth axiom
again.

Right-to-left: let f be such that f(I") # () and every f-consistent path is a
@-path. Let S¢ , be the set of all sets A maximal consistent in ¢l(7y) such that
f(A) # 0 and every f-consistent path from A is a p-path. Let x = \/AESM, A.
We first show that = x — \/cnys Eax (*). Assume, towards a contradiction,
that x A =V gens Eax is consistent. Then A A =\ ys Egx is consistent for
some A € Sy . Then, for any G € N? there must be a i¢ € G such that
AAIAQGﬁX is consistent. A A kic Voesn\s;., @ is consistent for each i, and by
modal reasoning for individual knowledge, AAV/ o SIS0 Kic @ is consistent for
each ig. Thus, for every G € N3 there is an ig € G and a O, € S\ St such
that AA Kic O;,, is consistent. In particular, since A € Sy, and thus f(A) # 0,

there is an z(;ie G = f(A) and a ©;, € S7\ Sf, such that A A IA(,»G% is

iG
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consistent. It follows (by a standard property of the canonical model [8, Ttem 4
of Lemma 7.14]) that A ~7 ;. Since i¢ € f(4), f(Ois) # 0 and since O;, is
not in Sy, that means that there is a an f-consistent path from ©;, which is
not a @-path. It follows that there is an f-consistent path from A that is not a
@-path. But A € Sy, which leads to a contradiction. Thus, we have shown (*).
From (*) and the induction rule, we get that - x — Ax. Since I is one of the
disjuncts in x we have that - I" — x. Thus, - I” — Ax. Since ¢ € ﬂAeS
we also have that - x — ¢. By Monotonicity, - Ax — A, and thus - I" —> Aap
Since Ay € cl(y), we have that Ap € I O

Lemma 10 (Truth). For anyy, ¢ € cl(y) and ' € 87, o € ' iff M7, I |= .

Proof. The proof is by structural induction on . We only show the induction
step for p = A, the other cases are straightforward and/or standard. We have
that M7, I" = Av iff (by Lemma 8) there is an f such that f(I") # 0 and ¢ is
true on every f-consistent path starting in I' iff (by the ind. hyp.) there is an f
such that f(I") # 0 and every f-consistent path starting in I" is a ¢-path iff (by
Lemma 9) Ay € T. O

We immediately get the following.

Theorem 1 (Completeness). SaA is complete.

6 Discussion

Intentionally anonymous announcements (i capture exactly the announcements
that are guaranteed to ensure anonymity. It all boils down to safety: intentional
anonymous announcements i are exactly public announcements of safety A¢!.
Furthermore, the 1 operators can be expressed in epistemic logic extended with
only the safety operator A. We gave a complete axiomatisation of the latter.

There are still many open problems. While the expressivity results “reduce”
the languages with @1 to equivalent languages we have axiomatisations for, they
don’t directly give us “native” axiomatisations of those languages themselves.

A conceptually related work is van Ditmarsch’s analysis of the Russian Cards
Problem [7] which also models safe announcements — albeit with a different
notion of safety, namely that a secret “card deal”, instead of the identity of
the announcer, is not revealed. A safe announcement of ¢ by a is captured by
(Ko A [Kap)C cignorant!], where C' is common knowledge among all agents and
cignorant is the safety or secrecy condition — corresponding to only the announcer
knowing the identity of the announcer in our case. That is again equivalent to
the sequence [K,¢!|[Ccignorant!], which means that ¢ is safe to announce for
a if Ccignorant holds after the announcement of K,p. Our [¢}] operator also
satisfies that definition of safety (Lemma 2) (although it cannot be expressed in
the logical language).

Safety can be strengthened by using some variant of distributed knowledge
[13,30], so that announcements are safe even when non-announcing agents share
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their knowledge to deduce the identity of the announcer. Another avenue of
further research is to extend the presented formalisms with quantification over
anonymous announcements like in [3, 1]. This will allow us to express properties
like “there is a safe anonymous announcement, such that ¢ holds afterwards”.
Also of interest for future work, is to model self-referential intentionally anony-
mous announcements of the form “after this very announcement, no-one will
know”, as studied recently in [4,16]%. Finally, in this paper we have focussed
on knowledge of agents. In the future, we would also like to explore anonymous
announcements also in the setting of non-S5 modal logics that can capture,
for example, beliefs, potentially false ones, of agents about the identity of the
announcer. That would also enable relaxing the strict definition of the safety
modality, e.g., similarly to the approximation of common knowledge in [19].

Acknowledgments We thank Hans van Ditmarsch and the LORI reviewers for de-
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