
Dynamic Coalition Logic: Granting and
Revoking Dictatorial Powers

Rustam Galimullin1 and Thomas Ågotnes1,2

1 University of Bergen, Bergen, Norway
{rustam.galimullin, thomas.agotnes}@uib.no

2 Southwest University, Chongqing, China

Abstract. One of the classic formalisms for reasoning about multi-agent
coalitional ability is coalition logic (CL). In CL it is possible to express
what a coalition can achieve in the next step no matter what agents
outside of the coalition do at the same time. We propose an extension of
CL with dynamic operators that allow us to grant dictatorial powers to
agents or to revoke them. In such a way we are able to reason about the
dynamics of coalitional ability. We also discuss some logical properties of
the proposed formalisms and compare their relative expressive power.

Keywords: Dynamic Coalition Logic · Coalition Logic · Arrow Updates
· Modal Logic.

1 Introduction

Reasoning about actions and abilities of single agents and groups of agents is
ubiquitous in AI. The notable examples are classical and epistemic [6] multi-
agent planning, game theory, software verification, and so on. One of the most
recent challenges is verification of the safety of blockchains, and, in particular,
smart contracts [11].

To simplify an example problem from [11], assume that there is a newly-
founded company, and the initial block of the smart contract specifies that the
board of directors consists of Alice, Bob, and Carol, and all financial decisions
are made according to the majority rule. Apart from the board of directors,
there are also employees, Dave and Ellen, with fewer privileges. Now assume
that Bob was caught making suspicious transactions and, according to some
financial regulation, they can no longer be on the board. Moreover, to substitute
Bob, Ellen was promoted. The resulting new situation is recorded in the next
block of the blockchain, where it is specified that Bob loses the right to make
financial decisions, while Ellen obtains such a right.

Clearly, in the described scenario, it is vital to specify what an agent, or a
group thereof, is able or unable to do. One of the most popular languages for
reasoning about abilities of groups of agents is called coalition logic (CL) [15]
(which can be considered as a Next-time fragment of alternating-time temporal
logic [3]). CL extends propositional logic with constructs 〈〈C〉〉ϕ meaning that

2 R. Galimullin and T. Ågotnes

‘there is a joint action by agents from coalition C such that no matter what agents
outside of the coalition do, ϕ holds after the execution of the joint action’.

While CL captures the abilities of agents to force certain outcomes, it pro-
vides only a static snapshot and thus is inadequate for the situations where new
policies or regulations override agents’ abilities. We thus propose the develop-
ment and study of dynamic coalition logic, with dynamic operators in the spirit
of dynamic epistemic logics3 [7] that can modify or update the abilities of agents
and coalitions. In the current paper we take the first step and focus on grant-
ing and revoking dictatorial powers, i.e. the ability of single agents to force an
outcome.

To model updates of dictatorial powers, we borrow syntax and basic intu-
ition from arrow update logic (AUL) [12], where constructs U = {(χ1, a1, ψ1),
. . . , (χn, an, ψn)} specify which belief relations should be preserved in a current
model. AUL, being a dynamic epistemic logic [7], models such epistemic events
as public and private announcements, lying, etc. Arrow updates were also used
to reason about norms [13].

First, we consider positive dictatorial dynamic coalition logic (DDCL+) that
extends CL with updates +U = {(χ1, a1, ψ1)+, . . . , (χn, an, ψn)+}. In this case,
+U specifies between which states an agent should be granted the dictatorial
power. In particular, (χ, a, ψ)+ means that agent a will be able to force any
state where ψ is true, from any state where χ holds. In terms of models, this
means that in the updated model there will be a set of new arrows satisfying the
requirement. In this regard, DDCL+ is slightly reminiscent of bridge logics [4].
However, in our case, the interpretation of arrows and the mechanism of adding
relations are completely different.

Apart from the logic of granting dictatorial powers, we also study the logic
of revoking such powers, which we call negative dictatorial dynamic coalition
logic (DDCL−). The logic extends CL with updates −U = {(χ1, a1, ψ1)−, . . . ,
(χn, an, ψn)−} that, similarly to the updates of AUL, specify which dictatorial
powers should be preserved, while all other such powers, not satisfying the spec-
ification, are removed.

In the paper, after we recall some background information about CL in Sec-
tion 2, we present syntax and semantics of DDCL+ and DDCL− (Section 3).
In particular, we argue that updates +U and −U are not always executable.
In Section 4, we study the expressivity of the logics. Specifically, in contrast to
AUL, which has the same expressive power as the logic without arrow updates,
we show that DDCL+ and DDCL− are strictly more expressive than CL. Hence,
again in contrast to AUL, there cannot be reduction axioms for the logics. Fi-
nally, we also show that DDCL+ and DDCL− are incomparable. We discuss
further research in Section 5.

3 Dynamic epistemic logics with coalitional operators have been studied only in the
setting of public announcements (see [8, 9]). These logics, however, are not strictly
coalitional in the sense of [15] since they are defined on epistemic models, not con-
current game models.

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 3

2 Some Definitions and Notions of Coalition Logic

As the logics introduced in this paper are dynamic extensions of coalition logic,
we first provide all the necessary background information on it (see [15, 14, 2]).
Let P be a countable set of propositional variables, and A be a finite set of
agents.

Definition 1. The language of coalition logic CL is given recursively by the
following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ

where p ∈ P and C ⊆ A. Constructs 〈〈C〉〉ϕ are read ‘coalition C can force ϕ’.
We denote A \ C as C. The dual of 〈〈C〉〉ϕ is [[C]]ϕ := ¬〈〈C〉〉ϕ¬ϕ.

Formulas of coalition logic are interpreted on concurrent game models.

Definition 2. A concurrent game model (CGM), or a model, is a tuple M =
(A,S,Act, act, out, L). A is a non-empty finite set of agents, and the subsets of
A are called coalitions. S is a non-empty set of states, and Act is a non-empty
set of actions.

Function act : A× S → 2Act \ ∅ assigns to each agent and each state a non-
empty set of actions. A C-action at a state s ∈ S is a tuple αC such that αC(i) ∈
act(i, s) for all i ∈ C. The set of all C-actions in s is denoted by act(C, s). We
will also write αC1

∪ αC2
to denote a C1 ∪ C2-action with C1 ∩ C2 = ∅.

A tuple of actions α = 〈α1, . . . , αk〉 with k = |A| is called an action profile.
An action profile is executable in state s if for all i ∈ A, αi ∈ act(i, s). The
set of all action profiles executable in s is denoted by act(s). An action profile α
extends a C-action αC , written αC v α, if for all i ∈ C, α(i) = αC(i).

Function out assigns to each state s and each α ∈ act(s) a unique output
state. We write Out(s, αC) for {out(s, α) | α ∈ act(s) and αC v α}. Intuitively,
Out(s, αC) is the set of all states reachable by action profiles that extend some
given C-action αC . Finally, L : S → P is the valuation function.

We will also denote a CGM M with a designated, or current, state s as Ms.

Note that although in [15] the semantics of CL are given relative to effec-
tivity models, we still can use CGMs as these types of models are semantically
equivalent (see more on this topic in [10]).

Definition 3. Let Ms be a pointed CGM. The semantics of CL are defined as
follows:

Ms |= p iff s ∈ L(p)
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= 〈〈C〉〉ϕ iff ∃αC ,∀αC : Mt |= ϕ, where t = out(s, αC ∪ αC)

4 R. Galimullin and T. Ågotnes

Informally, the semantics of the coalition modality 〈〈C〉〉ϕ mean that in the cur-
rent state of a given CGM there is a choice of actions by the members of coalition
C such that no matter what the opponents from the anti-coalition C choose to
do at the same time, ϕ holds after the execution of the corresponding action
profile. Given ϕ and M , we define JϕKM := {s ∈ S |Ms |= ϕ}.

Definition 4. We call a formula ϕ valid if for all Ms it holds that Ms |= ϕ.

Definition 5. Let M = (A,SM , ActM , actM , outM , LM) and N = (A,SN , ActN ,
actN , outN , LN) be two CGMs. A relation Z ⊆ SM ×SN is called bisimulation
if and only if for all C ⊆ A, s1 ∈ SM and s2 ∈ SN , (s1, s2) ∈ Z implies

– for all p ∈ P , s1 ∈ LM (p) iff s2 ∈ LN (p);
– for all αC ∈ actM (C, s1), there exists βC ∈ actN (C, s2) such that for every
s′2 ∈ OutN (s2, βC), there exists s′1 ∈ OutM (s1, αC) such that (s′1, s

′
2) ∈ Z.

– The same as above with 1 and 2 swapped.

If there is a bisimulation between M and M linking states s1 and s2, we call the
pointed models bisimilar (Ms1 � Ns2).

Theorem 1 ([1]). Let M and N be CGMs such that M � N and there is a
bisimilation between s ∈ SM and t ∈ SN . Then for all ϕ ∈ CL, Ms |= ϕ iff
Nt |= ϕ.

Before we continue, we define an auxiliary set of forcing actions for each state
and agent. Intuitively, an action is a forcing action if all action profiles it appears
in lead to the same state.

Definition 6. Let M be a CGM. The set of forcing actions for agent i and
state s, denoted as f(i, s), is defined as follows:

{αi ∈ act(i, s) | ∀α, β ∈ act(s) : (αi v α and αi v β) implies out(α, s) = out(β, s)}

Without loss of generality and to make the following technical presentation
clearer, we assume that each action in the set of forcing actions is labelled with

a pair of states it connects. Thus, elements of f(i, s) are a
(s,t1)
i , b

(s,t2)
i , . . .

3 Dictatorial Dynamic Coalition Logic

In this section we introduce the ways of granting and revoking dictatorial powers
of agents. We borrow the syntax from arrow update logic [12].

3.1 Granting Dictatorial Powers

Definition 7. The language of positive dictatorial dynamic coalition logic DDCL+

is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ | [+U]ϕ
+U ::= (ϕ, a, ϕ)+ | (ϕ, a, ϕ)+,+U

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 5

where p ∈ P , a ∈ A, and C ⊆ A. We will abuse the notation and treat the
ist +U := (ψ1, a1, ϕ1)+, . . . , (ψn, an, ϕn)+ as the set +U := {(ψ1, a1, ϕ1)+, . . . ,
(ψn, an, ϕn)+}. The dual of [+U]ϕ is 〈+U〉ϕ := ¬[+U]¬ϕ.

The supposed meaning of (ϕ, a, ψ)+ is as follows: in each ϕ-state, in the
updated model, there will be a new action for agent a such that no matter which
actions other agents choose, the target state is a ψ-state. In case of multiple ϕ-
and ψ-states, we have a new action for each transition.

Example 1. Before giving the formal definition of the semantics, let us consider
an example. In Figure 1, in model M there are three states, s, t, and u, and two
agents, a and b. In s, agent a has three actions, a0, a1, and a2, and she has the
ability to decide which state will be next. Agent b does not have the ability to
force anything in the model.

s : ¬p,¬q

t : p, q u : p,¬q

M

a2b0 a1b0

a0b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U1

a2b0

a0b1

a1b1

a2b1
a1b0

a0b0

a0b0 a0b0

a0b2

Fig. 1. Models M (left) and M+U1

(right), where thick arrows depict new transitions,
and new actions are in bold font.

To make the example more relatable, assume that p means that agent a has a
cup of coffee, and q stands for b having coffee. Action a1 signifies agent a pouring
coffee just for herself; if she chooses a2, then she pours coffee for b as well; and
actions a0 and b0 are ‘do nothing’, or ‘enjoy oneself’ actions. It is clear from the
figure that in s, where neither a nor b have coffee, a can choose to either get a
cup for herself (transition to state u), or for both of them (transition to t), or
just do nothing (self-loop in s). Agent b, being a polite guest of a, cannot do
anything.

The set of forcing actions for a in s is f(a, s) = {a(s,s)0 , a
(s,u)
1 , a

(s,t)
2 } and the

set of forcing actions for b in s is empty. In states t and u both of a and b have
one forcing action each: a has a0 and b has b0.

Now, let us consider +U1 = {(¬q, b, q)+}. Informally, we want to give agent
b the power to get a cup of coffee whenever she does not have one. The result of
updating our model with +U1 is presented in Figure 1 on the right. In the figure,

6 R. Galimullin and T. Ågotnes

agent b gains two new actions (in bold font in the figure): b1 in s, and b2 in u.
Then, for each action profile with b1 or b2 there is a transition (depicted by thick
arrows) to state t, where q is true. This means that after the update, agent b has
the dictatorial power to force q from any of the states where q does not hold.
Formally, we have, for example, that Ms 6|= 〈〈b〉〉q and Ms |= [+U1]〈〈b〉〉q. With

the update, sets of forcing actions are changed as well. In state s, f(a, s) = {a(s,t)2 }
and f(b, s) = {b(s,t)1 }; in state t both a and b have a

(t,t)
0 and b

(t,t)
0 respectively; in

state u, f(b, u) = {b(u,u)0 , b
(u,t)
2 } and a does not have forcing actions.

As another example, consider +U2 = {(>, b,¬p)+}. We can imagine an in-
formal reading as agent b gets rid of a’s coffee no matter what, and precludes
her from getting one if she hasn’t got one yet (state s). The update of the initial
model is depicted in Figure 2 on the left.

s : ¬p,¬q

t : p, q u : p,¬q

M+U2

a0b1

a1b1

a2b1

a2b0

a0b2

a1b0

a0b3

a0b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U

a2b0
b1

a1b0

a0b0

a0b0 a0b0

b2

a3

a3

Fig. 2. Model M+U2

(left) and a tentative updated model M+U (right), where thick
arrows depict new transitions, dashed arrows depict new tentative transitions required
by update +U , and new actions are in bold font. Observe that in M+U both a and b
require dictatorial powers in s.

In the updated model, agent a does not have any strategy to escape ¬p,
or, formally, Ms |= [+U2][[a]]¬p. The non-empty sets of forcing actions in the

updated model are the following: f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(b, t) =

{b(t,t)0 , b
(t,s)
2 }, and f(b, u) = {b(u,u)0 , b

(u,s)
3 }.

Before we continue with the definition of the semantics, it should be noted
that not every update can be implemented. For example, in our initial model in
Figure 1, we may require the following update: +U = {(¬q, b, q)+, (¬p, a, p)+}.
In this case, we have a clash of control while assigning a transition from s and
t: both a and b should have the ability to force t. See the model on the right in
Figure 2 for a representation of the problem.

Definition 8. Let M be a CGM, and +U be an update. We call +U executable
in M iff for all (ϕ, i, ψ)+, (χ, j, τ)+ ∈ +U : JϕKM ∩ JχKM = ∅ whenever i 6= j.

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 7

Informally, the definition says that an update is executable if it is not granting
dictatorial powers to different agents in the same state.

Definition 9. Let Ms be a CGM. The semantics of DDCL+ extends Definition
3 with the following clause for updates:

Ms |= [+U]ϕ iff +U is executable in M implies M+U
s |= ϕ

where M+U = (A,S,Act+U , act+U , out+U , L) is the updated model.
To define M+U = (A,S,Act+U , act+U , out+U , L), we first define the set of

new forcing actions for each agent i in each state s. Let Pairs+U(ϕ,i,ψ)+ = {s |
Ms |= ϕ} × {s | Ms |= ψ} be all pairs of states between which we need to
add transitions according to some (ϕ, i, ψ)+ ∈ +U . The new set of forcing ac-

tions f+U (i, s) consists of actions i
(s,t)
k for each (s, t) ∈ Pairs+U(ϕ,i,ψ)+ and all

(ϕ, i, ψ)+ ∈ +U , where k starts with |act(i, s)|+ 1 and is increased by 1 for each
such (s, t). Intuitively, the set of new forcing actions is constructed according to
+U such that each new action has a unique ordinal number k.

Then Act+U is Act ∪
⋃
i∈A,s∈S f

+U (i, s). Function act+U (i, s) = act(i, s) ∪
f+U (i, s). Finally,

out+U (α, s) =

{
t, ∃α(s1,s2)

i v α : α
(s1,s2)
i ∈ f+U (i, s) and s2 = t

out(α, s), otherwise

Intuitively, out+U (α, s) takes the system into state t if there is a forcing action
in α labelled with (s, t), and works as the original out(α, s) if there are no new
forcing actions in α.

As the first step towards the systematic study of DDCL+, we consider some
valid and not valid formulas of the logic. Proofs are omitted due to the lack of
space.

Proposition 1. The following holds for formulas of DDCL+.

1. 〈+U〉ϕ ∧ 〈+U〉ψ ↔ 〈+U〉(ϕ ∧ ψ) is valid.
2. 〈+U1〉ϕ ∧ 〈+U2〉ϕ→ 〈+U1 ∪+U2〉ϕ is not valid.
3. 〈+U1〉〈+U2〉ϕ→ 〈+U2〉〈+U1〉ϕ is not valid.
4. 〈(ψ1, a, χ1)+, (ψ2, b, χ2)+〉ϕ→ 〈(ψ1, a, χ1)+〉〈(ψ2, b, χ2)+〉ϕ is not valid.
5. 〈(ψ1, a, χ1)+〉〈(ψ2, b, χ2)+〉ϕ→ 〈(ψ1, a, χ1)+, (ψ2, b, χ2)+〉ϕ is not valid.
6. 〈(ψ1, a, χ1)+, (ψ2, b, χ2)+〉ϕ → 〈(ψ1, a, χ1)+〉〈(ψ2, b, χ2)+〉ϕ, where ψ1, χ1,

ψ2, and χ2 are propositional, is valid.

Intuitively, property 1 states that positive updates are monotonic operators.
That we cannot, in general, unite or commute updates is captured by items 2
and 3. The intuition behind possible counterexamples is that such actions may
result in updates that are not executable. Properties 4 and 5 claim that we
cannot decompose a single update into a series of consecutive ones, and vice
versa. However, such a decomposition is possible if the starting and target states
are specified by formulas of propositional logic, as claimed by item 6.

8 R. Galimullin and T. Ågotnes

Remark 1. Items 4, 5, and 6 of Proposition 1 hint at possible interaction between
DDCL+ and a fragment thereof with only single-agent updates, where we grant
dictatorial powers to one agent at a time. In particular, such updates are always
executable: there is no clash of power if we consider only a single agent per
update. Due to the lack of space, we leave the discussion of the fragment and
how it relates to DDCL+ for the future.

3.2 Revoking Dictatorial Powers

Apart from granting dictatorial powers, another way of updating coalitional
abilities is by revoking such powers. Similarly to DDCL+, we approach this
problem from the perspective of arrow updates.

Definition 10. The language of negative dictatorial dynamic coalition logic
DDCL− is given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ | [−U]ϕ
−U ::= (ϕ, a, ϕ)− | (ϕ, a, ϕ)−,−U

where p ∈ P , a ∈ A, and C ⊆ A. We treat the list −U as the set −U :=
{(ψ1, a1, ϕ1)−, . . . , (ψn, an, ϕn)−}. The dual of [−U]ϕ is 〈−U〉ϕ := ¬[−U]¬ϕ.

The idea behind −U updates is similar to how arrow updates work in AUL
[12]: the list −U specifies which dictatorial powers should be preserved. In other
words, for each χ-state where there is a local dictatorial agent a forcing a ψ-state,
we check whether there is a corresponding (χ, a, ψ)− in −U . If yes, then we leave
the corresponding arrows as they are; if not, we delete the corresponding arrows.

Example 2. Recall model M+U2

in Figure 2 with the non-empty sets of forcing

actions f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(b, t) = {b(t,t)0 , b
(t,s)
2 }, and f(b, u) =

{b(u,u)0 , b
(u,s)
3 }.

Now, assume that the abuse of power by b after update +U2 was not tol-
erated in the office, and the new policy was issued specifying that once a has
got a coffee, she can enjoy it in peace. The corresponding update is −U3 =
{(p, b, p)−, (¬p, b,¬p)−}, where the first clause preserves self-loops in states t and
u, and the second clause preserves some of the self-loops in state s. The result of
updating M+U2

with −U3 is shown in Figure 3. The new sets of forcing actions

are f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(a, t) = {a(t,t)0 }, f(b, t) = {b(t,t)0 }, f(a, u) =

{a(u,u)0 }, and f(b, u) = {b(u,u)0 }. Now it holds that M+U2

t |= 〈〈b〉〉¬p ∧ [−U3][[b]]p.

Similarly to the case of +U , we need to be careful with −U since we do
not want to end up in a situation, where an agent does not have any actions
in some state. Indeed, consider the further update of the model from Figure 3
with −U4 = {(p ∧ ¬p, a, p ∧ ¬p)−} meaning that we are required to revoke all
dictatorial powers from all the agents (since none of the states satisfy p ∧ ¬p).
The resulting model would look like the one presented in Figure 3 on the right.

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 9

s : ¬p,¬q

t : p, q u : p,¬q

M+U2,−U3

a0b1
a1b1
a2b1

a2b0 a1b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U2,−U3,−U4

a2b0 a1b0

Fig. 3. Model M+U2,−U3

(left) and a tentative updated model M+U2,−U3,−U4

(right).

In the resulting tentative model there are no actions in states t and u, hence
the structure in Figure 3 is not a CGM at all. To tackle this issue, we, once
again, require a corresponding condition of executability.

We first specify which forcing actions should be preserved in f(i, s) according
to −U in a given CGM M . Set f−U (i, s) of forcing actions to be preserved is
defined as

f−U (i, s) = {α(s,t)
i ∈ f(i, s) | ∃(ϕ, i, ψ)− ∈ −U : Ms |= ϕ and Mt |= ψ}

Intuitively, a forcing action α(s,t) should be preserved if there is a (ϕ, i, ψ)− ∈ −U
such that s satisfies ϕ, and t satisfies ψ.

Definition 11. Let M be a CGM, and −U be an update. We call −U executable
in M iff for all i ∈ A and s ∈ S at least one of the following conditions is true:

– |f−U (i, s)| 6= 0
– ∃αi ∈ act(i, s) : αi 6∈ f(i, s)

In other words, executability of −U means that for all forcing actions, either
we have a clause in −U that allows us to preserve at least one forcing action
from a state, or there are other, non-forcing, actions by the agent in the state.
This ensures that agents do not run out of actions as a result of an update.

Definition 12. Let Ms be a CGM. The semantics of DDCL− extends Definition
3 with the following clause for updates:

Ms |= [−U]ϕ iff −U is executable in M implies M−Us |= ϕ

where M−U = (A,S,Act−U , act−U , out−U , L) is the updated model.
We denote by f−(i, s) the set f(i, s) \ f−U (i, s) of forcing actions of agent i

in state s to be removed from the model. Then function act−U (i, s) = act(i, s) \
f−(i, s), and the updated set of executable action profiles is act−U (s). Set Act−U

is
⋃
i∈A,s∈S act

−U (i, s). Finally, out−U (α, s) is restricted to those action profiles

α that are in act−U (s).

10 R. Galimullin and T. Ågotnes

One of the side-effects of considering forcing actions in the setting of ability
updates is that if for a given model there are no forcing actions, then all −U ’s
are executable and none of −U has any effect on the model. This result follows
directly from the definition of the semantics.

Proposition 2. Let M be a CGM such that for all i ∈ A and s ∈ S, f(i, s) = ∅.
Then for any −U and ϕ ∈ DDCL− it holds that Ms |= [−U]ϕ iff Ms |= ϕ.

Similarly to DDCL+, we mention some properties of DDCL−.

Proposition 3. The following holds for formulas of DDCL−.

1. 〈−U〉ϕ ∧ 〈−U〉ψ ↔ 〈−U〉(ϕ ∧ ψ) is valid.
2. 〈−U1〉ϕ ∧ 〈−U2〉ϕ→ 〈−U1 ∪ −U2〉ϕ is not valid.
3. 〈−U1〉〈−U2〉ϕ→ 〈−U2〉〈−U1〉ϕ is not valid.

Property 1 states that negative updates are monotonic, while items 2 and 3
say that in general we cannot take a union of negative updates or change the
order of their application. The counterexamples can be provided by exploiting
the fact that negative updates may become not executable once united or applied
in a different order.

4 Expressivity

Definition 13. Let ϕ and ψ be formulas. We say that they are equivalent if for
all Ms it holds that Ms |= ϕ iff Ms |= ψ.

Definition 14. Let L1 and L2 be two languages. We say that L1 is at least as
expressive as L2 (L2 6 L1) if and only if for all ϕ ∈ L2 there is an equivalent
ψ ∈ L1. If L1 is not at least as expressive as L2, we write L2 66 L1. If L2 6 L1

and L1 66 L2, we write L2 < L1 and say that L1 is strictly more expressive than
L2. Finally, if L1 66 L2 and L2 66 L1, we say that L1 and L2 are incomparable.

We first show that both logics, DDCL+ and DDCL−, are strictly more ex-
pressive than CL, and thus, in contrast to the situation with AUL [12], positive
and negative updates cannot be eliminated.

Proposition 4. CL < DDCL+ and CL < DDCL−.

Proof. The fact that both DDCL+ and DDCL− are at least as expressive as CL
follows from the fact that CL ⊆ DDCL+ and CL ⊆ DDCL−.

For DDCL+ 66 CL, consider models Ms and Ns in Figure 4. There is only
one agent a with the only available action a0. It is immediate that Ms and Ns
are bisimilar and thus cannot be distinguished by any formula of CL. At the
same time, 〈(p, a,¬p)+〉〈〈a〉〉¬p is true in Ns (with the resulting updated model
N+U
s) and false in Ms (as there are no states where ¬p would hold).

In order to show that DDCL− 66 CL, we will use a technical trick that some
−U ’s are not executable in some models. Consider 〈(p, a, p)−〉〈〈a〉〉p ∈ DDCL−,

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 11

s : p

M

a0

s : p t : ¬p

N

a0 a0

s : p t : ¬p

N+U

a0 a0

a1

Fig. 4. Models, from left to right, Ms, Ns, and N+U
s . New actions are in bold font.

s : p

a0, a1

M

s : p s1 : p . . . sn−1 : p sn : ¬p

a0 a0 a0 a0

a1 a1 a1 a1

N

Fig. 5. Models Ms (left) and Ns (right).

and assume towards a contradiction that there is an equivalent ψ ∈ CL with
|ψ| = n.

Consider models Ms and Ns in Figure 5. The former has only one state with
a loop, and the latter is a chain of length n+1 with ¬p being the case only at the
farthest state from s. Although M and N are not bisimilar, it is clear from the
construction of the models that both of them satisfy the same ψ up to modal
depth n: there is simply not enough modal depth to witness a difference. On
the other hand, Ms |= 〈(p, a, p)−〉〈〈a〉〉p (all the forcing actions remain intact),
and Ns 6|= 〈(p, a, p)−〉〈〈a〉〉p. Indeed, since the update requires us to remove all
forcing actions that do not conform to (p, a, p)−, we have to remove the loop at
the last state sn, which results in sn being without any actions, and thus the
whole update is not executable in Ns.

Another non-obvious question is whether DDCL+ and DDCL− are differ-
ent. We show that it is indeed the case, and, in particular, that the logics are
incomparable.

Theorem 2. DDCL− 66 DDCL+.

Proof. Consider models Ms and Ns in Figure 6. Observe that they are bisimilar,
and thus satisfy the same formulas of CL. Moreover, it can be argued that the
models also satisfy the same formulas of DDCL+. Indeed, we can reason by
induction that adding a forcing transition in one model, adds an equivalent
forcing transition in the other model. Intuitively, some +U is executable in one
model if and only if it is executable in the other model, and no new forcing arrow
can take us to a non-bisimilar state.

Updates −U depend, on the other hand, on the sets of forcing actions. For M ,

the sets of forcing actions are f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)0 }, f(a, t) = {a(t,t)0 },
and f(b, t) = {b(t,t)0 }. The thing to notice here is that both agents have forcing
actions in both states. For model N , the non-empty sets of forcing actions are

f(a, s) = {a(s,s)0 , a
(s,t)
1 } and f(a, t) = {a(t,t)0 , a

(t,s)
1 }. Since there are no forcing ac-

tions for agent b, we can exploit it with −U ’s. In particular, consider 〈(p, a, p)−〉p,

12 R. Galimullin and T. Ågotnes

s : p t : p

M

a0b0 a0b0

s : p t : p

N

a0b0 a0b0
a1b0

a1b0

Fig. 6. Models Ms (left) and Ns (right).

which intuitively orders to preserve only a’s forcing actions. It is easy to see that
〈(p, a, p)−〉 is not executable in Ms, and hence Ms 6|= 〈(p, a, p)−〉p. At the same
time Ns |= 〈(p, a, p)−〉p, since updating Nt with 〈(p, a, p)−〉 leaves the model
intact.

Theorem 3. DDCL+ 66 DDCL−.

Proof. Consider modelsMs andNs in Figure 7. Observe that modelN is actually
a disjoint union of two models. Moreover, Ms and Ns are bisimilar.

s : p t : p

M

a0b1
a1b0

a0b1
a1b0

a0b0
a1b1

a0b0
a1b1

s : p t : p

u : ¬p v : ¬p

N , N (p,a,¬p)+

a0b1
a1b0

a0b1
a1b0

a0b0
a1b1

a0b0
a1b1

a2b0
a2b1

a3b0
a3b1

a4b0
a4b1a5b0

a5b1

Fig. 7. Models Ms (on the left), Ns (on the right minus thick transitions), and

N
(p,a,¬p)+
s (including thick transitions). Transitions between states s and t in mod-

els N and N (p,a,¬p)+ are exactly like in M , and thus some labels are omitted for
readability.

The models are constructed in such a manner that the sets of forcing actions
in all states for all agents of both models are empty. Hence, given an arbitrary
formula ϕ of DDCL− we can use Proposition 2 to get a translation t(ϕ) into an
equivalent formula CL. Finally, since Ms and Ns agree on formulas of CL we can
conclude that they also agree on all formulas of DDCL− .

Dynamic Coalition Logic: Granting and Revoking Dictatorial Powers 13

Now consider 〈(p, a,¬p)+〉〈〈a〉〉¬p ∈ DDCL+. Since there are no states that
satisfy ¬p in M , updating the model with 〈(p, a,¬p)+〉, which is executable in
M , yields exactly the same model. Because there are no ¬p-states, we have
Ms 6|= 〈(p, a,¬p)+〉〈〈a〉〉¬p.

On the other hand, there are states satisfying ¬p in N , and the update of N
with 〈(p, a,¬p)+〉 is shown in Figure 7 on the right including thick transitions.

It is clear that N
(p,a,¬p)+
s |= 〈〈a〉〉¬p, and hence Ns |= 〈(p, a,¬p)+〉〈〈a〉〉¬p.

5 Discussion

We presented two dynamic extensions CL that allow us to reason about the
dynamics of coalitional ability. The first extension, DDCL+, deals with granting
dictatorial powers to single agents. The second extension, DDCL−, reasons about
revoking dictatorial powers. We showed that both formalisms are strictly more
expressive than CL, and that they are mutually incomparable.

Since this work is just the first step towards dynamic coalition logic, there
is a plethora of open questions and further research directions. For example, it
is not clear how to combine granting and revoking dictatorial powers together
in the same update. Apart from that, the next natural step is reasoning about
granting powers to coalitions, rather than to single agents, i.e. we will consider
(χ,C, ψ)+ and (χ,C, ψ)− in the future. The challenge here is that while we may
want to grant a coalition some forcing power, we may also want that none of the
members of the coalition has such a power on their own.

Another exciting avenue of further research is comparing the complexities of
the model-checking problems of DDCL+ and DDCL−. Yet another immediate
next step is providing sound and complete axiomatisations of the logics. However,
it seems particularly difficult as axiomatisations of many well-known relation
changing logics are still unknown [4, 5]. Finally, there is also a conceptual subtlety
worth exploring. In our definition of forcing actions we called an action forcing if
for all action profiles it appears in, the outcome state is the same. In other words,
forcing actions in our interpretation force single states. This is a reasonable
interpretation of forcing/dictatorship, but it is not the only one. Another possible
interpretation of a forcing action is that the action forces a (not necessarily
singleton) set of ϕ-states. We plan to investigate this notion of the forcing action
in the future.

Acknowledgments

We thank the anonymous reviewers of the paper.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Samet, D. (ed.) Proceedings of the 11th TARK. pp.
15–24 (2007). https://doi.org/10.1145/1324249.1324256

14 R. Galimullin and T. Ågotnes

2. Ågotnes, T., Goranko, V., Jamroga, W., Wooldridge, M.: Knowledge and ability.
In: van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.) Handbook
of Epistemic Logic, pp. 543–589. College Publications (2015)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002). https://doi.org/10.1145/585265.585270

4. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
Journal of the IGPL 23(4), 601–627 (2015). https://doi.org/10.1093/jigpal/jzv020

5. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage
revisited. Journal of Logic and Computation 28(2), 269–303 (2018).
https://doi.org/10.1093/logcom/exx034

6. Bolander, T., Andersen, M.B.: Epistemic planning for single and multi-
agent systems. Journal of Applied Non-Classical Logics 21(1), 9–34 (2011).
https://doi.org/10.3166/jancl.21.9-34

7. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese
Library, vol. 337. Springer (2008)

8. Galimullin, R.: Coalition announcements. Ph.D. thesis, University of Nottingham,
UK (2019)

9. Galimullin, R.: Coalition and relativised group announcement logic. Journal
of Logic, Language and Information https://doi.org/10.1007/s10849-020-
09327-2 (2021)

10. Goranko, V., Jamroga, W.: Comparing semantics of log-
ics for multi-agent systems. Synthese 139(2), 241–280 (2004).
https://doi.org/10.1023/B:SYNT.0000024915.66183.d1

11. Herlihy, M., Moir, M.: Blockchains and the logic of accountability: Keynote address.
In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st LICS. pp.
27–30. ACM (2016). https://doi.org/10.1145/2933575.2934579

12. Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4), 536–559
(2011). https://doi.org/10.1017/S1755020311000189

13. Kuijer, L.B.: An arrow-based dynamic logic of norms. In: Gutierrez, J., Mogavero,
F., Murano, A., Wooldridge, M. (eds.) Proceedings of the 3rd SR. pp. 1–11 (2015)

14. Pauly, M.: Logic for Social Software. Ph.D. thesis, ILLC, University of Amsterdam,
The Netherlands (2001)

15. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149–166 (2002). https://doi.org/10.1093/logcom/12.1.149

