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Abstract. Public announcement logic (PAL) is an extension of epistemic logic
with dynamic operators that model the effects of all agents simultaneously and
publicly acquiring the same piece of information. One of the extensions of PAL,
group announcement logic (GAL), allows quantification over (possibly joint) an-
nouncements made by agents. In GAL, it is possible to reason about what groups
can achieve by making such announcements. It seems intuitive that this notion
of coalitional ability should be closely related to the notion of distributed knowl-
edge, the implicit knowledge of a group. Thus, we study the extension of GAL
with distributed knowledge, and in particular possible interaction properties be-
tween GAL operators and distributed knowledge. The perhaps surprising result is
that there in fact are no interaction properties, contrary to intuition. We make this
claim precise by providing a sound and complete axiomatisation of GAL with
distributed knowledge.

Keywords: Distributed Knowledge · Resolved Distributed Knowledge · Group
Announcement Logic · Dynamic Epistemic Logic.

1 Introduction

The main contribution of this paper is extending Group Announcement Logic (GAL)
[1] with distributed knowledge [11], and a sound and complete axiom system for the
resulting logic GALD.

Our motivation for studying this combination of modalities is twofold. First, extend-
ing epistemic logics with quantifiers over information-changing actions [2, 7, 8, 16], of
which GAL is a representative, with group knowledge modalities is an open problem.
Second, the quest for a better understanding of both types of logical operators and their
interaction is interesting in its own right. Distributed knowledge is often intuitively un-
derstood as closely related to the knowledge the agents would arrive at if they could
communicate their individual knowledge to each other. Deep analyses of this intuition
[4, 20, 17] shows that it is not always accurate, but when we started investigating GAL
with distributed knowledge operator D we nevertheless expected to find non-trivial in-
teraction axioms. We consider several plausible candidates for such interaction axioms,
and show that none of them are actually valid. Then we show that in fact there are no
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interaction axioms at all: the axiom system obtained by the independent combination
of axioms for epistemic logic with distributed knowledge and GAL is complete. This is
contrary to intuition, and therefore an interesting result.

We also consider the relationship between resolved distributed knowledge [4] and
distributed knowledge in the context of announcement logics, and give some prelimi-
nary results on their relative expressive power.

The paper is organised as follows. In the next section we briefly review the technical
background. In Section 3 we look at some potential interaction axioms relating group
announcements and group knowledge. In Section 4 we present a Hilbert-style axiomatic
system for group announcement logic with distributed knowledge, and show that it is
sound and complete. Resolved distributed knowledge is discussed in Section 5, before
we conclude in Section 6.

2 Background

In this section, we introduce the necessary background information on epistemic and
group announcement logic.

2.1 Languages

The language of GALD is defined relative to a finite set of agents A and a countable set
of propositional variables P . Below we also define a positive fragment of this language.

Definition 1. The language of group announcement logic with distributed knowledge
and its positive fragment are defined by the following BNFs:

LGALD ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | DGϕ | [ϕ]ϕ | [G]ϕ
LGALD+ ϕ+ ::= p | ¬p | ϕ+ ∧ ϕ+ | ϕ+ ∨ ϕ+ | Kaϕ

+ | DGϕ
+ | [¬ϕ+]ϕ+ | [G]ϕ+

where p ∈ P , a ∈ A and G ⊆ A.

The sublanguage only containing Ka modalities in addition to the propositional opera-
tors and variables is referred to as LEL (epistemic logic) [11], with addition of DG it
becomes LELD, LEL with announcements [ϕ] is referred to as LPAL [19], with DG

as LPALD, and LGALD without DG is LGAL. The intuitive meaning of formulas is
as follows: Kaϕ means that agent a knows that ϕ; DGϕ means that G has distributed
knowledge of ϕ (ϕ is true in the set of states that all agents in G consider possible);
[ϕ]ψ means that if ϕ is true, then after it is announced (and everyone’s knowledge up-
dated by removing states not satisfying ϕ), ψ is true; [G]ϕ means that after any joint
announcement by agents in G of formulas they know, ϕ is true. The quantification in
the latter modality is over conjunctions of formulas of LELD prefixed byKa for a ∈ G.

Duals are defined as K̂aϕ := ¬Ka¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, and 〈G〉ϕ := ¬[G]¬ϕ.
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2.2 Models and Bisimulation

Definition 2. An epistemic modelM is a triple (S,∼, V ), where S is a non-empty set of
states, ∼: A → 2S×S assigns to each agent an equivalence relation, and V : P → 2S

is a valuation. If necessary, we refer to the elements of the tuple as SM , ∼M , and VM .
A model M with a designated state s ∈ S is called a pointed model and denoted by

Ms.
Model M is called finite if S is finite. Also, we write M ⊆ N if SM ⊆ SN , ∼M

and VM are results of restricting ∼N and V N to SM , and call M a submodel of N .
An updated model Mϕ is (Sϕ,∼ϕ, V ϕ), where Sϕ = {s ∈ S |Ms |= ϕ}, ∼ϕa=∼a

∩ (Sϕ × Sϕ) for all a ∈ A, and V ϕ(p) = V (p) ∩ Sϕ (|= is given in Definition 5).

For a group G ⊆ A, ∼G denotes
⋂
a∈G ∼a.

Definition 3 (Bisimulation). Let M = (SM ,∼M , VM ) and N = (SN , ∼N , V N ) be
two models. A non-empty binary relation Z ⊆ SM ×SN is called a bisimulation if and
only if for all s ∈ SM and u ∈ SN with (s, u) ∈ Z:

– for all p ∈ P , s ∈ VM (p) if and only if u ∈ V N (p);
– for all a ∈ A and all t ∈ SM : if s ∼Ma t, then there is a v ∈ SN such that u ∼Na v

and (t, v) ∈ Z;
– for all a ∈ A and all v ∈ SN : if u ∼Na v, then there is a t ∈ SM such that s ∼Ma t

and (t, v) ∈ Z.

If there is a bisimulation between models M and N linking states s and u, we say
that Ms and Nu are bisimilar, and write Ms � Nu.

Definition 4 (Bisimulation contraction). Let M = (S,∼, V ) be an epistemic model.
The bisimulation contraction of M is the model ‖M‖ = (‖S‖, ‖ ∼ ‖, ‖V ‖), where
‖S‖ = {[s] | s ∈ S} and [s] = {t ∈ S |Ms � Nt}, [s]‖∼‖a[t] if and only if ∃s′ ∈ [s],
∃t′ ∈ [t] such that s′ ∼a t′ in M , and [s] ∈ ‖V ‖(p) if and only if ∃s′ ∈ [s] such that
s′ ∈ V (p).

It is a known result that Ms � ‖M‖[s] [15].

2.3 Semantics of GALD

Let us denote by ψG a formula of the form
∧
a∈GKaψa where ψa ∈ LEL. We refer to

this fragment as LGEL. We will also write >G to denote
∧
a∈GKa(p ∨ ¬p).

Definition 5 (Semantics of GALD). LetMs be a pointed epistemic model. The seman-
tics of GALD is defined as follows (boolean cases are as usual and we omit them):

Ms |= Kaϕ iff ∀t ∈ S : s ∼a t implies Mt |= ϕ
Ms |= DGϕ iff ∀t ∈ S : s ∼G t implies Mt |= ϕ
Ms |= [ψ]ϕ iff Ms |= ψ implies Mψ

s |= ϕ
Ms |= [G]ϕ iff ∀ψG :Ms |= [ψG]ϕ

Definition 6 (Validity and satisfiability). ϕ is valid (|= ϕ) if and only if for any
pointed model Ms it holds that Ms |= ϕ. ϕ is satisfiable if and only if there is some Ms

such that Ms |= ϕ.
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2.4 The Positive Fragment

Positive formulas can be considered as a particularly well behaved fragment of public
announcement logic [9]. In particular, they remain true after an announcement.

Definition 7. A formula ϕ is said to be preserved under submodels if and only if Ms |=
ϕ implies Ns |= ϕ for any pointed models Ms and Ns such that Ns ⊆Ms.

Proposition 1. Formulas of LGALD+ are preserved under submodels.

Proof. Let M = (SM ,∼M , VM ) and N = (SN ,∼N , V N ) be models such that s ∈
SM , s ∈ SN , andNs ⊆Ms. Boolean cases, caseKaϕ

+, and case [¬ψ+]ϕ+ are proved
in [9, Proposition 8]. We show the remaining two cases DGϕ

+ and [G]ϕ+.
Induction hypothesis. If Ms |= ϕ+, then Ns |= ϕ+.
Case DGϕ

+. Let Ms |= DGϕ
+. By the definition of semantics, this is equivalent

to the fact that ∀t ∈ SM : s ∼G t implies Mt |= ϕ+. The latter implies that ∀t ∈ SN :
s ∼G t implies Mt |= ϕ+. By the induction hypothesis, we have that ∀t ∈ SN : s ∼G t
implies Nt |= ϕ+, which is equivalent to Ns |= DGϕ

+.
Case [G]ϕ+. Assume towards a contradiction that Ms |= [G]ϕ+ and Ns 6|= [G]ϕ+.

By the duality of group announcements, this is equivalent to Ns |= 〈G〉¬ϕ+, and by
the definition of semantics, the latter is equivalent to ∃ψG : Ns |= 〈ψG〉¬ϕ+, which
equals to Ns |= ψG and NψG

s 6|= ϕ+. Now observe that NψG
s ⊆ Ns ⊆ Ms. From that

and the contraposition of the induction hypothesis, it follows that Ms 6|= ϕ+. However,
Ms |= [G]ϕ+ implies that Ms |= [>G]ϕ+. Finally, Ms |= [>G]ϕ+ is equivalent to
Ms |= ϕ+, which contradicts Ms 6|= ϕ+.

3 Ability, announcements, and group knowledge

Distributed knowledge is often described as potential individual (or even common)
knowledge, that the individual members of the group can establish “through communi-
cation” or by “pooling their knowledge together”. However, this intuition is in fact not
correct [4]. For example, a group can have distributed knowledge of a formula of the
form p ∧ ¬Kap (sometimes called a Moore sentence [18]), which can never become
individual knowledge in a group that contains agent a [4]. Nevertheless, that doesn’t
mean that there are no interaction properties between group announcements and group
knowledge. Indeed, the natural intuition is that there is. In this section, we consider
possible interaction axioms relating group announcements and group knowledge.

It is known that the following potential axioms are not valid [1]:

– 〈G〉ϕ→ DG〈G〉ϕ
– DG〈G〉ϕ→ 〈G〉DGϕ

It is also known that the following are valid:

– 〈G〉DGϕ → DG〈G〉ϕ (implied by Proposition 28 of [1] and the fact that knowl-
edge de re implies knowledge de dicto)

– DG〈G〉ϕ→ 〈G〉ϕ (distributed knowledge is veridical)
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Consider weaker properties which involve ‘everybody knows’ operator EG where
EGϕ :=

∧
a∈GKaϕ. These properties encapsulate the intuition that distributed knowl-

edge can be made explicit through public communication. It is known that the following
is not valid:

– DGϕ→ 〈G〉EGϕ (take ϕ := p ∧ ¬Kap where a ∈ G [4])

The other direction also does not hold:

Fact 1 〈G〉EGϕ→ DGϕ is not valid.

Proof. Consider Figure 1.
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t

a

Fig. 1. Models M and Mψ{a,b}

Let ϕ := Kbp ∨Kb¬p and ψ{a,b} := Ka(p → Kbp) ∧Kb(p ∨ ¬p). We have that

Ms |= 〈ψ{a,b}〉E{a,b}ϕ, which is equivalent to Ms |= ψ{a,b} and M
ψ{a,b}
s |= E{a,b}ϕ.

On the other hand, it is easy to verify that Ms 6|= D{a,b}ϕ as the only∼{a,b}-accessible
state is s itself, and Ms 6|= ϕ.

In general, implicit knowledge in a group cannot be made explicit via public com-
munication. However, there is an exception. Positive formulas can be made known on
bisimulation contracted models (this restriction is not surprising given analysis in [17]).

Fact 2 DGϕ
+ → 〈G〉EGϕ+ is valid on finite bisimulation contracted models.

Proof. Let Ms |= DGϕ
+ for an arbitrary finite bisimulation contracted Ms. Since dis-

tributed knowledge is veridical, the latter implies Ms |= ϕ+. Now let us a consider the
maximally informative announcement by agents from G. Since Ms is finite and bisim-
ulation contracted, each state in the model can be uniquely described by a characteristic
formula. Moreover, disjunctions of these formulas correspond to sets of states. Agents
from G can announce characteristic formulas that describe their equivalence classes
and include s, i.e. [s]a ∩ . . . ∩ [s]b for a, . . . , b ∈ G (see [3, 13] for details). In the
resulting model MψG

s , relation ∼G on set of states SψG is universal. Moreover, since
ϕ+ is preserved under submodels, we have that MψG

s |= EGϕ
+, and, consequently,

Ms |= 〈G〉EGϕ+.

The restriction to finite bisimulation contracted models is essential in the previous
proposition.

Fact 3 DGϕ
+ → 〈G〉EGϕ+ is not valid.

Proof. Consider the model in Figure 2. It is easy to check that Ms |= D{a,b}p and
Ms 6|= 〈{a, b}〉E{a,b}p. Indeed, any announcement by a that preserves {s, t} also pre-
serves {u, v}. The same holds for agent b and sets {s, u} and {t, v}.
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4 Proof System for GALD

In this section, we provide a sound and complete axiomatisation for GALD. Our proofs
follow general strategies of proofs from [1, 5, 22].

4.1 Axiomatisation of GALD

In order to provide the proof system, we first define necessity forms [14].

Definition 8. Necessity forms are defined by the following grammar:

η(]) ::= ] | ϕ→ η(]) | Kaη(]) | DGη(]) | [ϕ]η(])

where ϕ ∈ LGALD, and ] has a unique occurrence in η(]). The result of substituting ϕ
for ] in η is denoted by η(ϕ).

Definition 9. The axiomatisation of GALD is comprised of axiom systems for EL [11],
PAL [10], GAL [1], and PALD [22].

(A0) Propositional tautologies (A11) [ϕ]p↔ (ϕ→ p)
(A1) Ka(ϕ→ ψ)→ Kaϕ→ Kaψ (A12) [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)
(A2) Kaϕ→ ϕ (A13) [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
(A3) Kaϕ→ KaKaϕ (A14) [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)
(A4) ¬Kaϕ→ Ka¬Kaϕ (A15) [ϕ]DGψ ↔ (ϕ→ DG[ϕ]ψ)
(A5) DG(ϕ→ ψ)→ DGϕ→ DGψ (A16) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ
(A6) DGϕ→ ϕ (A17) [G]ϕ→ [ψG]ϕ
(A7) DGϕ→ DGDGϕ (R0) ` ϕ→ ψ,` ϕ⇒` ψ
(A8) ¬DGϕ→ DG¬DGϕ (R1) ` ϕ⇒` Kaϕ
(A9) Daϕ↔ Kaϕ (R2) ` ϕ⇒` [G]ϕ
(A10) DGϕ→ DHϕ, if G ⊆ H (R3) ∀ψG :` η([ψG]ϕ)⇒` η([G]ϕ)

We denote by GALD the smallest set that contains all instances of A0–A17 and is
closed under R0–R3. Elements of GALD are called theorems.

Lemma 1. Rule R3 is truth-preserving.
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Proof. The proof is by induction on the construction of η. Let Ms be a pointed epis-
temic model. We show only the case DHη(]), and other cases are similar.

Case DHη(]). Let ∀ψG : Ms |= DHη([ψG]ϕ). By the semantics this means that
∀ψG,∀t : s ∼H t implies Mt |= η([ψG]ϕ). Pick any t such that s ∼H t. By the
induction hypothesis we have Mt |= η([G]ϕ). Since t was arbitrary, ∀t : s ∼H t
implies Mt |= η([G]ϕ), which is equivalent to Ms |= DHη([G]ϕ).

Theorem 1. GALD is sound.

Proof. Soundness of R2 is easy to show. The rest follows from the soundness of PALD
[22], GAL [1], and Lemma 1.

4.2 Completeness

Following the technique from [22, 23], we prove the completeness of GALD by making
a detour through pre- and pseudo models, where distributed knowledge operators are
treated as classic knowledge modalities.

Definition 10. An epistemic pre-model is a tupleM = (S,∼, V ), where∼ maps every
agent a and every subset G ⊆ A to an element of 22

S

. A pre-model is called a pseudo-
model (and is written M) if for all a it holds that ∼{a}=∼a, and for all G,H ⊆ A: if
G ⊆ H , then ∼H⊆∼G.

Next, we define theories that will be used for the construction of the canonical
model.

Definition 11. A set x of formulas of LGALD is called a theory, if it contains all theo-
rems and is closed under R0 and R3. A theory is consistent if for all ϕ, either ϕ 6∈ x or
¬ϕ 6∈ x. A theory is called maximal if for all ϕ, either ϕ ∈ x or ¬ϕ ∈ x.

Theories are not required to be closed underR1 andR2 since this rules of inference,
unlike R0 and R3, preserve only validity and not truth.

Lemma 2. Let x be a theory, and ϕ,ψ ∈ LGALD. The following are theories: x+ϕ =
{ψ | ϕ → ψ ∈ x}, Kax = {ϕ | Kaϕ ∈ x}, DGx = {ϕ | DGϕ ∈ x}, and
[ϕ]x = {ψ | [ϕ]ψ ∈ x}.

Proof. Cases for x+ ϕ, Kax, [ϕ]x are proved in [5, Lemma 4.11]. Here we argue that
DGx is a theory.

We need to show that DGx contains GALD and is closed under R0 and R3. Let
ϕ ∈ GALD. Then we also have that DGϕ ∈ GALD by the necessitation of DG, which
is derivable in PALD [22]. Since x is a theory, and hence GALD ⊆ x, we have that
DGϕ ∈ x, and ϕ ∈ DGx. This establishes that GALD ⊆ DGx.

Assume that ϕ → ψ,ϕ ∈ DGx. By A5 and R0 this implies that DGψ ∈ x, or,
equivalently, ψ ∈ DGx.

Suppose that ∀ψG: η([ψG]ϕ) ∈ DGx. This means that ∀ψG:DGη([ψG]ϕ) ∈ x, and
from the fact thatDGη(]) is a necessity form, we conclude byR3 thatDGη([G]ϕ) ∈ x.
Finally, by the definition of DGx we yield η([G]ϕ) ∈ DGx.
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Lemma 3. For all consistent theories x, ¬ϕ 6∈ x if and only if x+ ϕ is consistent.

Lemma 4 (Theorem 2.5.2 of [14]). Every consistent theory can be extended to a max-
imal consistent theory.

Definition 12. The canonical pseudo model is MC = (SC ,∼C , V C), where SC =
{x | x is maximal consistent theory}, x ∼Ca y if and only if Kax ⊆ y, x ∼CG y if and
only if DHx ⊆ y and H ⊆ G, and V C(p) = {x ∈ SC | p ∈ x}.

For the rest of the section, we employ the following strategy. First, we prove the
truth lemma for the canonical pseudo model. Next, we unravel MC into the tree-like
pre-modelMC , which satisfies the same GALD formulas as MC . After that, we fold
MC into the model MC . Folding preserves trans-bisimulation, and hence we will be
able to conclude the completeness of GALD.

Definition 13. The size and []-depth of ϕ ∈ LGALD are defined as follows:
Size(p) = 1 d[](p) = 0
Size(¬ϕ) = Size(Kaϕ) = d[](¬ϕ) = d[](Kaϕ) =
= Size(DGϕ) = Size([G]ϕ) = = d[](DGϕ) = d[](ϕ)
= Size(ϕ) + 1 d[](ϕ ∧ ψ) = max{d[](ϕ), d[](ψ)}

Size(ϕ ∧ ψ) = max{Size(ϕ), Size(ψ)}+ 1 d[]([ψ]ϕ) = d[](ψ) + d[](ϕ)
Size([ψ]ϕ) = Size(ψ) + 3 · Size(ϕ) d[]([G]ϕ) = d[](ϕ) + 1

Definition 14 (Size Relation). The binary relation <Size[] between ϕ,ψ ∈ LGALD is
defined as follows:

ϕ <Size[] ψ iff d[](ϕ) < d[](ψ), or d[](ϕ) = d[](ψ) and Size(ϕ) < Size(ψ).
The relation is a well-founded strict partial order between formulas. Note that for all
epistemic formulas ψ we have that d[](ψ) = 0.

Lemma 5. Let ϕ, χ ∈ LGALD.

1. ϕ <Size[] ¬ϕ,
2. ϕ <Size[] ϕ ∧ ψ,
3. ϕ <Size[] Kaϕ,
4. ϕ <Size[] DGϕ,
5. ϕ→ p <Size[] [ϕ]p,

6. ϕ→ ¬[ϕ]ψ <Size[] [ϕ]¬ψ,
7. [ϕ]ψ ∧ [ϕ]χ <Size[] [ϕ](ψ ∧ χ),
8. [ϕ ∧ [ϕ]χ]ψ <Size[] [ϕ][χ]ψ,
9. [ψG]ϕ <

Size
[] [G]ϕ,

10. [χ][ψG]ϕ <
Size
[] [χ][G]ϕ.

Lemma 6. Let x be a theory. If DGϕ 6∈ x, then there is a maximal consistent theory y
such that DGx ⊆ y and ϕ 6∈ y.

Proof. Assume that DGϕ 6∈ x. This means that ϕ 6∈ DGx, and hence DGx + ¬ϕ is a
consistent theory by Lemma 3. By Lemma 4, DGx+¬ϕ can be extended to a maximal
consistent theory y. Since ¬ϕ ∈ y, by consistency we have that ϕ 6∈ y.

Lemma 7. Let x be a theory. If Kaϕ 6∈ x, then there is a maximal consistent theory y
such that Kax ⊆ y and ϕ 6∈ y.

Proof. Similar to the proof of Lemma 6.
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Lemma 8. For all formulas ϕ and maximal consistent theories x it holds that MC
x |= ϕ

if and only if ϕ ∈ x.

Proof. The proof is by induction on the size of ϕ. Boolean cases are straightforward,
and cases with public announcements are dealt with using A11–A16. Here we show
only cases with distributed knowledge and group announcements.

Case DGϕ. (⇒): Let MC
x |= DGϕ. By the semantics we have that for all y ∈ SC :

x ∼G y implies MC
y |= ϕ. By the definition of the canonical pseudo model, Lemma 5,

and the induction hypothesis, the latter is equivalent to the fact that for all y ∈ SC and
all H ⊆ G: DHx ⊆ y implies ϕ ∈ y. In particular, for all y ∈ SC : DGx ⊆ y implies
ϕ ∈ y. By the contraposition of Lemma 6 this implies that DGϕ ∈ x.

(⇐): Assume thatDGϕ ∈ x and x ∼CG y for some maximal consistent theory y. By
A7 andR0 it holds thatDGDGϕ ∈ x. By the definition of the canonical model, we have
that DGϕ ∈ y. Since y is a maximal consistent theory and thus contains DGϕ → ϕ,
it holds that ϕ ∈ y. Next, by the induction hypothesis we have that MC

y |= ϕ. Since y
was arbitrary, we have that MC

y |= ϕ for all y such that x ∼CG y. The latter is equivalent
to MC

x |= DGϕ by the semantics.
Case [ϕ]DGψ. MC

x |= [ϕ]DGψ if and only if MC
x |= ϕ → DG[ϕ]ψ by A15. By

Lemma 5 and the induction hypothesis, MC
x |= ϕ → DG[ϕ]ψ if and only if ϕ →

DG[ϕ]ψ ∈ x if and only if [ϕ]DGψ ∈ x by A15.
Case [ϕ][G]ψ. (⇒): Let MC

x |= [ϕ][G]ψ. By the semantics, ∀ψG: MC
x |= [ϕ][ψG]ψ.

By Lemma 5 and the induction hypothesis, [ϕ][ψG]ψ ∈ x for all ψG. Note that [ϕ](])
is a necessity form, hence, by R3, we have that [ϕ][G]ψ ∈ x.

(⇐): Let [ϕ][G]ψ ∈ x. The distributivity rule for public announcements is derivable
in PAL [10, Proposition 4.46]. Hence, by A17 and R0 it holds that [ϕ][ψG]ψ ∈ x. By
Lemma 5 and the induction hypothesis, ∀ψG: MC

x |= [ϕ][ψG]ψ. By the semantics,
∀ψG: MC

x |= ϕ implies (MC
x )

ϕ |= [ψG]ψ. The latter is equivalent to MC
x |= ϕ implies

(MC
x )

ϕ |= [G]ψ, and thus MC
x |= [ϕ][G]ψ.

Case [G]ϕ. (⇒): Let MC
x |= [G]ϕ. By the semantics, ∀ψG: MC

x |= [ψG]ϕ. By
Lemma 5 and the induction hypothesis, ∀ψG: [ψG]ϕ ∈ x, and by R3, [G]ϕ ∈ x.

(⇐): Let [G]ϕ ∈ x. By A17, [ψG]ϕ ∈ x for all ψG. By Lemma 5 and the induction
hypothesis, ∀ψG: MC

x |= [ψG]ϕ, which is equivalent to MC
x |= [G]ϕ by the semantics.

Due to the lack of space, we briefly sketch the second part of the proof. It follows
closely [22] and details can be found there.

Canonical pseudo model MC can be unravelled into the treelike canonical pre-
modelMC . Such an operation preserves bisimulation. After that, the pre-model can be
folded into the canonical model. Folding preserves trans-bisimulation (denoted �T ),
which can be considered as a generalisation of standard bisimulation with a separate
case for groups of agents. In such a way we can relate pre-models and models. The cor-
responding notion of equivalence between pre-models and models is trans-equivalence
(denoted ≡T ).

Before stating the completeness, we need one more result.

Lemma 9. Given Ms,Mt, and Mu, if Ms �T Mt �Mu, then Ms ≡T Mt.
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Proof. The proof is by induction on ϕ. Boolean cases, cases for knowledge and dis-
tributed knowledge, and the case for public announcements are proved in [22, Lemma
26]. We show the case of [G]ψ.

Assume thatMs |= [G]ψ. By the semantics this is equivalent to ∀ψG:Ms |= [ψG]ψ.
By the induction hypothesis we have that ∀ψG:Mt |= [ψG]ψ, which is equivalent to
Mt |= [G]ψ by the semantics.

Finally, we have everything we need to prove the completeness of GALD.

Theorem 2. For all ϕ ∈ LGALD, if ϕ is valid, then ϕ ∈ GALD.

Proof. Suppose towards a contradiction that ϕ is valid and ϕ 6∈ GALD. Since GALD
is a consistent theory, by Lemma 3 GALD +¬ϕ is a consistent theory. By Lemma
4, GALD +¬ϕ can be extended to a maximal consistent theory x such that GALD
+¬ϕ ⊆ x, and ¬ϕ ∈ x. By Lemma 8, the latter is equivalent to MC

x 6|= ϕ. Next,
the canonical pseudo model MC

x can be unravelled into bisimilar canonical pre-model
MC

y , and the latter can be folded into the trans-bisimilar canonical model MC
z . So, we

have that MC
x � MC

y and MC
y �

T MC
z . From MC

x 6|= ϕ by bisimilarity we have
MC

y 6|= ϕ. Finally, by Lemma 9, MC
x �MC

y andMC
y �

T MC
z imply MC

z ≡T MC
y ,

and fromMC
y 6|= ϕ we can infer that MC

z 6|= ϕ, which contradicts ϕ being a validity.

5 Resolved Distributed Knowledge

Resolved distributed knowledge models private publicly observable communication
within a group [4]. Distributed knowledge deals with agents’ knowledge before any
communication has taken place, and resolved distributed knowledge models the situ-
ation after all agents within a group have shared their knowledge. In a way, resolved
distributed knowledge is a kind of a dynamic operator in disguise. In this section, we
consider the relationship between group announcements, distributed, and resolved dis-
tributed knowledge.

Definition 15. Let M = (S,∼, V ) be an epistemic model. A global G-resolved update
of M is the model MG = (SG,∼G, V G), where SG = S, V G = V , and

∼Ga =

{⋂
b∈G ∼b if a ∈ G,
∼a otherwise.

The semantics for RGϕ is

Ms |= RGϕ iff MG
s |= ϕ

The immediate result is that resolution and distributed knowledge are indeed differ-
ent.

Fact 4 DGϕ→ RGϕ and RGϕ→ DGϕ are not valid.
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Proof. For the first formula, consider a modelMs such thatMs |= D{a,b}(p∧¬Kap)∧
Kbp. Then obviously Ms 6|= R{a,b}(p ∧ ¬Kap).

And for the second formula,R{a}p does not necessarily implyD{a}p. For example,
there is an Ms such that Ms |= p∧¬Kap, and hence Ms |= R{a}p (the model remains
the same and RGp↔ p) and Ms 6|= D{a}p (since Daϕ↔ Kaϕ).

An interesting thing to note is that in our counterexample to RGϕ → DGϕ, the
target ϕ was a positive formula Kap. Thus, RGϕ+ → DGϕ

+ is not valid as well.
Since resolved distributed knowledge models private communication, it does not

coincide with group announcements.

Fact 5 〈G〉ϕ→ RGϕ and RGϕ→ 〈G〉ϕ are not valid.

Proof. For the first formula, consider a two-state modelMs such thatMs |= 〈{b}〉(Kap∧
Kbp) ∧ ¬Kap. The b-resolved update of the model, leaves the model intact. Hence,
Ms 6|= R{b}Kap.

For the second formula, consider a two-state modelMs such thatMs |= R{a,c}(Kap∧
¬Kbp) ∧Kcp ∧ ¬Kap ∧ ¬Kbp. In such a model, no announcement by {a, c} can both
inform a that p is true, and leave b unaware of this fact. Hence, Ms 6|= 〈{a, c}〉(Kap ∧
¬Kbp).

Even if we require the target formula to be positive, neither resolution implies abil-
ity, nor ability implies resolution. In the previous proposition, the counterexample for
〈G〉ϕ→ RGϕ used positive formula Kap.

Fact 6 RGϕ
+ → 〈G〉ϕ+ is not valid.

Proof. Consider model M from Figure 2. We have that Ms |= R{a,b}Kap if and only
if M{a,b}s |= Kap, and at the same time Ms 6|= 〈{a, b}〉Kap. The rest of the argument
is similar to the one in the proof of Fact 3.

The surprising corollary of this proposition is that semi-private communication be-
tween all agents does not imply the possibility of equivalent public communication
between all agents. Formally, RAϕ→ 〈A〉ϕ is not valid even for positive ϕ.

The special case when private communication between all agents implies the ability
of equivalent public communication is considered in the next proposition.

Fact 7 RAϕ
+ → 〈A〉ϕ+ is valid on finite bisimulation contracted models.

Proof. On a finite bisimulation contracted model Ms, resolution for all agents results
in a model with the universal relation for all agents. This corresponds to the maximal
informative announcement by all agents (see Fact 2).

5.1 First Step Towards the Relative Expressivity of GALR and GALD

In the future, we would like to study the language of GAL extended with resolved
distributed knowledge. Let us denote such a language GALR. In this section we make
a first step towards comparing it to GALD.
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Definition 16. Let L1 and L2 be two languages. We say that L1 is at least as expressive
as L2 (L2 6 L1) if and only if for all ϕ ∈ L2 there is an equivalent ψ ∈ L1. If L1 is
not at least as expressive as L2, we write L2 66 L1.

Some results on the expressivity of logics with distributed knowledge and resolu-
tion are presented in [4]. Relative expressivity of GALR and GALD is an open question.
Here we present a partial result which establishes that a fragment GALD without dis-
tributed knowledge operators within public announcements (we call such a fragment
GALD−) is not at least as expressive as GALR.

Proposition 2. GALR 66 GALD−.

Proof. Consider a GALR formulaR{b,c}〈{a, b, c}〉(¬p∧K̂a(Kbp∧Kcp)∧K̂a(K̂b(¬p∧
Ka¬p)∧(K̂c(¬p∧Ka¬p))). Assume towards a contradiction that there is an equivalent
GALD− formula ψ, and |ψ| = n.

Consider models M and N (Figures 3 and 4), where p holds in white states.

. . .bc a bc a bc

s

. . .

a

a

bc a bc a

2n + 2 states

Fig. 3. Model M

. . .bc a bc

a c

a c

b

b

t

. . .

a

a

bc a bc a

a

Fig. 4. Model N

These models are bisimilar, and hence they agree on formulas of GAL. Structurally,
every model is almost symmetric, and the only difference are bits on the right.

For M it holds that Ms |= R{b,c}〈{a, b, c}〉(¬p ∧ K̂a(Kbp ∧Kcp) ∧ K̂a(K̂b(¬p ∧
Ka¬p)∧ (K̂c(¬p∧Ka¬p))). Indeed, resolution R{b,c} has no effect on the model, and
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the agents can make ¬p∧ K̂a(Kbp∧Kcp)∧ K̂a(K̂b(¬p∧Ka¬p)∧ (K̂c(¬p∧Ka¬p))
true (note that intersection of agents’ relations is the identity). This formula describes
the configuration depicted in Figure 5.

bc
s

aa

Fig. 5. An {a, b, c}-definable submodel of M

On the other hand, we have that Nt 6|= R{b,c}〈{a, b, c}〉(¬p ∧ K̂a(Kbp ∧ Kcp) ∧
K̂a(K̂b(¬p∧Ka¬p)∧ (K̂c(¬p∧Ka¬p))). Update of Nt with R{b,c} results in model
N{b,c}, which is fully symmetric and bisimilar in both directions from state t (R{b,c}
removes b and c relations in the upper right part). Thus, whatever the agents announce,
if they preserve the {b, c}-equivalence class (on the right in Figure 5), then they preserve
the same equivalence class on the left. Hence, the configuration depicted in Figure 5 is
unattainable.

That no GALD− formula can distinguish Ms and Nt can be shown using a modifi-
cation of formula games for GAL [12]. For brevity, we present an intuitive explanation
here. For all cases, apart from distributed knowledge, evaluation on the models coin-
cide. The models differ only in the upper rightmost parts, and this difference can only
be expressed using a formula with D due to the fact that the models are bisimilar. How-
ever, since ψ has a finite length n, and the models are 2n +1 bisimilar (in fact, they are
isomorphic up to this depth), ψ cannot ‘reach’ the states with different valuations of D.

6 Conclusions and Future Work

In this paper, we have shown that GALD has a complete and sound axiomatisation that
is obtained by putting together the axiomatisations of GAL and ELD. This shows that
surprisingly there are no non-trivial interaction axioms required for the proof system.
However, in special cases (positive fragment, bisimulation contracted models) the op-
erators interact more in agreement with the intuition. Same holds for the interactions
between group announcements and resolved distributed knowledge.

GALD is the first step towards enriching the logics of quantified announcements
with group knowledge modalities. In future work, we plan to consider GAL with com-
mon knowledge [21] and relativised common knowledge [6, 23]. Another avenue of
further research is to consider coalition announcement logic (CAL) [2] with group
knowledge. In CAL, as opposed to GAL, agents outside of a group make a simulta-
neous announcement as well, and thus they may preclude the group from reaching its
epistemic goals. Finally, we would like to investigate GALR. In particular, we are in-
terested in its axiomatisation and expressivity relative to GALD.
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1. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal
of Applied Logic 8(1), 62–81 (2010)
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