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Abstract

There are several ways to quantify over public announcements. The
most notable are reflected in arbitrary, group, and coalition announcement
logics (APAL, GAL, and CAL correspondingly), with the latter being the
least studied so far. In the present work, we consider coalition announce-
ments through the lens of group announcements, and provide a complete
axiomatisation of a logic with coalition announcements. To achieve this,
we employ a generalisation of group announcements. Moreover, we study
some logical properties of both coalition and group announcements that
have not been studied before.

Keywords: Dynamic Epistemic Logic, Public Announcement Logic,
Group Announcement Logic, Coalition Announcement Logic.

1 Introduction

The recent trend in dynamic epistemic logic (DEL) [van Ditmarsch et al., 2008]
is quantification over various epistemic actions (see, for example, [Balbiani et al.,
2008; Hales, 2013; Bozzelli et al., 2014; van Ditmarsch et al., 2017]). Arguably
the simplest of such actions are public announcements [Plaza, 2007] that model
the effects of agents simultaneously and publicly receiving the same piece of
information. Public announcement logic (PAL) is an extension of epistemic
logic (EL) [Meyer and van der Hoek, 1995] with constructs [ψ]ϕ meaning that
‘after a public announcement of ψ, ϕ is true in the resulting model’. Such a
public announcement removes epistemic alternatives where ψ is not true.

Quantification over public announcements has been studied in [Balbiani
et al., 2008], where the authors introduce arbitrary public announcement logic

∗This paper is partially based on [Galimullin and Alechina, 2017] (and its corrected version
available at https://arxiv.org/abs/1810.02769). Section 3, apart from Propositions 4 and
11, is entirely new. The axiomatisation and the completeness proof in Section 4 are also new,
and many overlapping results (e.g. the Lindenbaum Lemma) are significantly improved.
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(APAL) to deal with Fitch’s knowability paradox [Brogaard and Salerno, 2013].
APAL is the extension of PAL with formulas �ϕ meaning that ‘after a public
announcement of any epistemic formula, ϕ holds in the resulting model’. These
additional formulas allow us to reason about the existence of an announcement
leading to ϕ without providing such an announcement explicitly. For example,
Ali Baba may know that there is a secret phrase to enter the thieves’ cave, but
he may not know which phrase it is.

Modalities of APAL do not take into account who makes an announcement
and whether the announcement can be made by any set of agents modelled in
a system. Hence, other possible quantified extensions of PAL were proposed.
Group announcement logic (GAL) [Ågotnes and van Ditmarsch, 2008; Ågotnes
et al., 2010] is an extension of PAL with group announcement modalities [G]ϕ
(and its dual 〈G〉ϕ). Alternatively, GAL can be considered as a restriction
of APAL: instead of quantifying over all epistemic formulas, we quantify over
formulas known to agents in a group G.

Formula 〈G〉ϕ should be read as ‘there is a truthful announcement by agents
from group G such that ϕ holds after that announcement’. In this context
a truthful announcement means that agents actually know formulas they an-
nounce. In other words, an announcement by a group is a conjunction of simul-
taneous announcements by each member of the group. Similarly, [G]ϕ is read
‘whatever agents from group G announce, ϕ holds afterwards’.

A logic of quantified announcements with a competitive flavour to it is coali-
tion announcement logic (CAL), which was proposed in [Ågotnes and van Dit-
marsch, 2008] as another generalisation of PAL. CAL modalities [〈G〉]ϕ and
〈[G]〉ϕ, as opposed to the GAL ones, are interpreted as double quantifications
of the type ∀∃ and ∃∀ over epistemic formulas known to agents. Thus, [〈G〉]ϕ
means ‘whatever agents from G announce, there is an announcement by the
agents outside of G such that ϕ holds afterwards’. And its dual, 〈[G]〉ϕ, is read
as ‘there is a truthful announcement made by the agents in G such that no
matter what the agents not in G simultaneously announce, ϕ holds afterwards’.
When dealing with coalition announcements, we refer to G as ‘coalition’, and
to the set of agents not in G as ‘anti-coalition’.

To illustrate the intuitive distinction between GAL and CAL consider the
standard Prisoner’s Dilemma scenario. If for some reason prosecutors interro-
gate only one of the prisoners (prisoner a, for example), then a can make an
announcement to betray her accomplice (prisoner b) and avoid any punishment
(let this outcome be denoted by ϕ). In GAL, we can express this situation
with formula 〈{a}〉ϕ. However, if the prisoners are pitched against each other,
none of them have the luxury of leaving the prison: if a decides to make an an-
nouncement to betray b, then b simultaneously makes a counter-announcement
to betray agent a. Formally, ¬〈[{a}]〉ϕ, or, equivalently, [〈{a}〉]¬ϕ.

CAL modalities were motivated by coalition logic [Pauly, 2002] (which is
subsumed by CAL, see Appendix A) and van Benthem’s playability operator
[van Benthem, 2014, 2001]. Thus, CAL can be considered as one of the meet-
ing points between DEL and game theory. Among other logics of quantified
announcements — APAL and GAL — CAL is the least studied one.
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In [Balbiani et al., 2008] the authors presented both finitary and infinitary
versions of the proof system of APAL. However, it was later shown that the
finitary variant is not sound1. Moreover, the completeness proof for APAL
presented in [Balbiani et al., 2008] turned out to be incorrect. Subsequently,
the proof was corrected in [Balbiani, 2015] and simplified in [Balbiani and van
Ditmarsch, 2015].

As the proof system of GAL [Ågotnes et al., 2010] is quite similar to the
one of APAL, it has suffered the same fate. The finitary version of the proof
system is not sound [Fan, 2016, Footnote 4], and the correct completeness proof
can be obtained via a relatively straightforward modification of the proof from
[Balbiani and van Ditmarsch, 2015].

A complete axiomatisation of CAL is an open question. The satisfiability
problem for all of APAL, GAL, and CAL is known to be undecidable [Ågotnes
et al., 2016]. The relative expressivity of these logics is an open question. In
[French et al., 2019] the authors solve one half of the problem by showing that
APAL and CAL are not at least as expressive as GAL.

In this paper, we study coalition announcements through the lens of group
announcements. In Section 3, we consider logical properties of CAL and com-
pare them to the corresponding properties of GAL. In particular, we settle some
open problems mentioned in the literature, and discuss the interaction between
group and coalition announcements.

Continuing the theme of studying coalition announcements through the
group ones, we present an axiomatiosation of a logic with coalition announce-
ments in Section 4. In order to achieve completeness, we employ special group
announcement operators, which we call relativised group announcements. The
latter are like normal group announcements with some formula added as an ad-
ditional conjunct to agents’ announcements. This allows us to split a coalition’s
announcement and the anti-coalition’s response. The completeness of the result-
ing formalism, coalition and relativised group announcement logic (CoRGAL),
can be shown in a standard fashion for logics of quantified announcements (see
[Galimullin, 2019] for the proof). In this work, however, we present an alter-
native completeness proof based on [Wang and Cao, 2013; Wang and Aucher,
2013]. This proof is interesting in its own right, since it allows us to treat the
quantification over announcements similar to the box modality, i.e. as quan-
tification over arrows in a model. In other words, we shift the perspective on
public announcements, and treat them as static objects.

This, alternative, treatment of public announcements as classic modal oper-
ators also allows us to view models as tree-like structures, where nodes of the
structure correspond to the initial model and various updates thereof, and edges
are labeled with formulas being announced. This outlook may prove useful for
dealing with problems that may require a tree-like representation of a model,
e.g. showing that a logic has finite model property, or that some variant of a
logic of quantified announcements is decidable. For example, in [van Ditmarsch

1A counterexample was given by Louwe Kuijer and can be found at
https://personal.us.es/hvd/APAL counterexample.pdf
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and French, 2017] the authors, while proving the decidability of a restricted
version of APAL, employ a ranked set of submodels of a given model, which is
essentially a tree-like structure.

2 Background

2.1 Languages and Semantics

Let A be a finite set of agents, and P be a countable set of propositional vari-
ables.

Definition 1 (Languages). Languages of epistemic logic, public announcement
logic, group announcement logic, and coalition announcement logic are defined
by the following BNFs:

LEL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

LPAL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ

LGAL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [G]ϕ

LCAL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [〈G〉]ϕ

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional
logic (such as ∨, →, ↔) and conventions for deleting parentheses hold. Dia-

mond versions of modalities are defined as K̂aϕ := ¬Ka¬ϕ, 〈ψ〉ϕ := ¬[ψ]¬ϕ,
〈G〉ϕ := ¬[G]¬ϕ, and 〈[G]〉ϕ := ¬[〈G〉]¬ϕ. Formula Kaϕ is read as ‘agent a
knows ϕ’, [ψ]ϕ is read as ‘after public announcement of ψ, ϕ holds’, [G]ϕ is
read as ‘after any public announcement by agents from G, ϕ holds’, and [〈G〉]ϕ
is read as ‘for any public announcement by agents from G, there is a simulta-
neous public announcement by agents from A \ G such that ϕ holds after the
joint announcement’.

Formulas of all logics we are dealing with in the paper are interpreted in
epistemic models.

Definition 2 (Epistemic model). An epistemic model is a triple M = (S, ∼,
V ), where S is a non-empty set of states, ∼: A→ 2S×S is an equivalence relation
for each agent a ∈ A, V : P → 2S is the valuation function for propositional
variables p ∈ P . If necessary, we refer to the elements of the tuple as SM , ∼M ,
and VM .

A model M with a designated state s ∈ S is called a pointed model and
denoted by Ms.

Model M is called finite if S is finite. Also, we write M ⊆ N if SM ⊆ SN ,
∼M and VM are results of restricting ∼N and V N to SM , and call M a submodel
of N .

An updated model Mϕ is (Sϕ,∼ϕ, V ϕ), where Sϕ = {s ∈ S | Ms |=
ϕ} (|= is defined in Definition 3), ∼ϕa=∼a ∩ (Sϕ × Sϕ) for all a ∈ A, and
V ϕ(p) = V (p) ∩ Sϕ. A model which results in subsequent updates of Ms with
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formulas ϕ1, . . . , ϕn is denoted by Mϕ1,...,ϕn
s . We will also sometimes write

MX
s = (SX ,∼X , V X), where X ⊆ S, s ∈ X, SX = X, ∼Xa =∼a ∩(X ×X) for

all a ∈ A, and V X(p) = V (p) ∩X.

Let us denote by ψG formula
∧
a∈GKaψa such that ψa ∈ LPAL2. We refer to

the set of all ψG’s as LGPAL. We will also write >G to denote
∧
a∈GKa(p∨¬p).

Definition 3 (Semantics). Let Ms be a pointed epistemic model. The seman-
tics is defined as follows:

Ms |= p iff s ∈ V (p)
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= Kaϕ iff for all t ∈ S : s ∼a t implies Mt |= ϕ
Ms |= [ψ]ϕ iff Ms |= ψ implies Mψ

s |= ϕ
Ms |= [G]ϕ iff ∀ψG : Ms |= [ψG]ϕ
Ms |= [〈G〉]ϕ iff ∀ψG,∃χA\G : Ms |= ψG implies Ms |= 〈ψG ∧ χA\G〉ϕ

Quantification in the definition of the semantics of group and coalition an-
nouncement operators [G] and [〈G〉] is restricted to public announcement formu-
las known to agents. This allows us to avoid circularity in the definition. More
on this issue and alternative semantics for quantified announcements is in [van
Ditmarsch et al., 2016].

Note that [ψ]ϕ is vacuously true if ψ is false, i.e. every ϕ is true after a false
announcement. Also, it is easy to see that the diamond version of the public
announcement operator implies the box one: 〈ψ〉ϕ→ [ψ]ϕ.

For convenience, let us also give the semantics of 〈G〉ϕ and 〈[G]〉ϕ.

Ms |= 〈G〉ϕ iff ∃ψG : Ms |= 〈ψG〉ϕ
Ms |= 〈[G]〉ϕ iff ∃ψG,∀χA\G : Ms |= ψG and Ms |= [ψG ∧ χA\G]ϕ

Definition 4 (Validity and satisfiability). We call formula ϕ valid and write
|= ϕ if and only if for any pointed model Ms it holds that Ms |= ϕ. And ϕ is
called satisfiable if and only if there is some Ms such that Ms |= ϕ.

2.2 Bisimulation

The basic notion of similarity in modal logic is bisimilation [Blackburn et al.,
2001, Chapter 2].

Definition 5 (Bisimulation). Let M = (SM ,∼M , VM ) and N = (SN , ∼N ,
V N ) be two models. A non-empty binary relation Z ⊆ SM × SN is called a
bisimulation if and only if for all s ∈ SM and u ∈ SN with (s, u) ∈ Z:

• for all p ∈ P , s ∈ VM (p) if and only if u ∈ V N (p);

2As any formula of LPAL can be translated into an equivalent formula of LEL [Plaza,
2007], for succinctness’ sake, we use the former rather than the latter in the scope of knowledge
modalities in group announcements.
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• for all a ∈ A and all t ∈ SM : if s ∼Ma t, then there is a v ∈ SN such that
u ∼Na v and (t, v) ∈ Z;

• for all a ∈ A and all v ∈ SN : if u ∼Na v, then there is a t ∈ SM such that
s ∼Ma t and (t, v) ∈ Z.

If there is a bisimulation between models M and N linking states s and u, we
say that Ms and Nu are bisimilar, and write Ms � Nu.

Definition 6 (Bisimulation Contraction). Let M = (S,∼, V ) be a model. The
bisimulation contraction of M is the model ‖M‖ = (‖S‖, ‖∼‖, ‖V ‖), where
‖S‖ = {[s] | s ∈ S} and [s] = {t ∈ S | Ms � Mt}, [s]‖∼‖a[t] if and only if
∃s′ ∈ [s], ∃t′ ∈ [t] such that s′ ∼a t′, and [s] ∈ ‖V ‖(p) if and only if ∃s′ ∈ [s]
such that s′ ∈ V (p).

It is a standard result that Ms � ‖M‖[s] [Goranko and Otto, 2007]. Infor-
mally, bisimulation contraction ‖M‖ is the minimal representation of M .

Theorem 1. Suppose Ms and Nt are bisimilar. Then for all ϕ ∈ LGAL∪CAL,
Ms |= ϕ if and only if Nt |= ϕ.

Proof. Follows from the fact that PAL is invariant under bisimulation [van Dit-
marsch et al., 2008].

This fact means that no GAL or CAL formula can distinguish two bisimilar
states.

Corollary 2. ‖M‖[s] |= ϕ if and only if Ms |= ϕ for all ϕ ∈ LGAL∪CAL.

3 Logical Properties of GAL and CAL

Validity and non-validity of certain logical formulas may shed light on some
internal properties of the logic as well as build (or disprove) intuitions about
how this logic may be (dis)similar to some other one. In Section 3.1 we study
how uniting and decoupling groups and coalitions of agents affects their powers
to achieve some configurations of a given model. Moreover, we investigate some
relations between box and diamond versions of group and coalition announce-
ment operators in Section 3.2. After that, in Section 3.3, we consider properties
that capture some aspects of the interaction between CAL and GAL.

In what follows, we will frequently use axioms and validities of PAL. All of
them can be found in [van Ditmarsch et al., 2008, Chapter 4].

3.1 Virtues of Cooperation

Intuition suggests that various groups and coalitions of agents, when united,
can do no worse than if they were acting on their own. In this section we show
that this intuition is indeed true.

We start with a somewhat obvious statement: if some configuration of a
model can be achieved by a coalition, then the configuration can be achieved
by a superset of the coalition.
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Proposition 3. 〈[G]〉ϕ→ 〈[G ∪H]〉ϕ, where G,H ⊆ A, is valid.

Proof. Let Ms |= 〈[G]〉ϕ for some arbitrary Ms. By the semantics of CAL this
is equivalent to

∃ψG,∀χA\G : Ms |= ψG ∧ [ψG ∧ χA\G]ϕ.

Let us consider formula χA\G. Since A \G = (A \ (G ∪H)) ∪ (H \G), we can
split the formula into two parts χA\(G∪H) and χH\G. Hence we have

∃ψG,∀χH\G,∀χA\(G∪H) : Ms |= ψG ∧ [ψG ∧ χH\G ∧ χA\(G∪H)]ϕ.

This implies

∃ψG,∃>H\G,∀χA\(G∪H) : Ms |= ψG ∧ >H\G ∧ [ψG ∧ >H\G ∧ χA\(G∪H)]ϕ,

where>H\G :=
∧
a∈H\GKa>. Combining ψG and>H\G into a single announce-

ment ψG∪H by the united coalition G ∪H, we conclude that

∃ψG∪H ,∀χA\(G∪H) : Ms |= ψG∪H ∧ [ψG∪H ∧ χA\(G∪H)]ϕ.

This is equivalent to Ms |= 〈[G ∪H]〉ϕ by the semantics.

It was shown in [Ågotnes et al., 2010] that 〈G〉ϕ↔ 〈G〉〈G〉ϕ. This property
demonstrates that within the framework of GAL a multiple-step strategy of a
group can be executed in a single step. Whether this is true for CAL is an open
question. We show, however, that if the truth of some ϕ can be achieved by two
consecutive coalition announcements by G, then whatever agents from A \ G
announce, they cannot preclude G from making ϕ true.

Proposition 4. 〈[G]〉〈[G]〉ϕ→ [〈A \G〉]ϕ is valid.

Proof. Suppose that for some Ms it holds that Ms |= 〈[G]〉〈[G]〉ϕ. This is equiv-
alent to

∃ψG,∀χA\G,∃ψ′G,∀χ′A\G : Ms |= ψG ∧ [ψG ∧ χA\G](ψ′G ∧ [ψ′G ∧ χ′A\G]ϕ).

Since χ′A\G quantifies over all epistemic formulas known to A \G, it also quan-

tifies over >A\G :=
∧
a∈A\GKa>. Hence it is implied that

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG ∧ [ψG ∧ χA\G](ψ′G ∧ [ψ′G ∧ >A\G]ϕ),

which is equivalent to

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG ∧ [ψG ∧ χA\G]ψ′G ∧ [ψG ∧ χA\G][ψ′G]ϕ.

Using PAL validity [ψ]χ ∧ [ψ][χ]ϕ↔ [ψ]χ ∧ [ψ]〈χ〉ϕ, we get

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG ∧ [ψG ∧ χA\G]ψ′G ∧ [ψG ∧ χA\G]〈ψ′G〉ϕ.
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Next, we use PAL validity [ψ]ϕ↔ (ψ → 〈ψ〉ϕ):

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG∧[ψG∧χA\G]ψ′G∧(ψG∧χA\G → 〈ψG∧χA\G〉〈ψ′G〉ϕ).

By propositional reasoning this implies

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG ∧ (ψG ∧ χA\G → 〈ψG ∧ χA\G〉〈ψ′G〉ϕ),

which is equivalent to

∃ψG,∀χA\G,∃ψ′G : Ms |= ψG ∧ (ψG → (χA\G → 〈ψG ∧ χA\G〉〈ψ′G〉ϕ)).

The latter implies

∃ψG,∀χA\G,∃ψ′G : Ms |= χA\G → 〈ψG ∧ χA\G〉〈ψ′G〉ϕ.

By PAL axiom 〈ψ〉〈χ〉ϕ↔ 〈ψ ∧ [ψ]χ〉ϕ, we have that

∃ψG,∀χA\G,∃ψ′G : Ms |= χA\G → 〈ψG ∧ χA\G ∧ [ψG ∧ χA\G]ψ′G〉ϕ.

Let us consider the subformula ψG ∧ χA\G ∧ [ψG ∧ χA\G]ψ′G. Here, ψ′G is
an abbreviation for

∧
i∈GKiψ

′
i. Using PAL axiom [ψ](ϕ ∧ χ) ↔ [ψ]ϕ ∧ [ψ]χ,

we can push the public announcement within the scope of
∧
i∈G: ψG ∧ χA\G ∧∧

i∈G[ψG ∧ χA\G]Kiψ
′
i.

Next, by PAL axiom [ψ]Kaϕ ↔ (ψ → Ka[ψ]ϕ), we obtain ψG ∧ χA\G ∧∧
i∈G(ψG ∧ χA\G → Ki[ψG ∧ χA\G]ψ′i). By propositional reasoning, the latter

is equivalent to ψG ∧ χA\G ∧
∧
i∈GKi[ψG ∧ χA\G]ψ′i. Substituting this into the

original formula, we get

∃ψG,∀χA\G,∃ψ′G : Ms |= χA\G → 〈ψG ∧ χA\G ∧
∧
i∈G

Ki[ψG ∧ χA\G]ψ′i〉ϕ.

We can move ∃ψG within the scope of ∀χA\G, and, using the fact that
Ka(ϕ∧ψ)↔ Kaϕ∧Kaψ, combine ψG and

∧
i∈GKi[ψG ∧χA\G]ψ′i into a single

announcement by G of the form
∧
i∈GKi(ψi∧ [

∧
i∈GKiψi∧χA\G]ψ′i). Since the

latter belongs to LGPAL, we abbreviate it as ψ∗G
The resulting formula

∀χA\G,∃ψ∗G : Ms |= χA\G → 〈χA\G ∧ ψ∗G〉ϕ

is equivalent to Ms |= [〈A \G〉]ϕ by the semantics of CAL.

Whether 〈[G]〉〈[G]〉ϕ→ 〈[G]〉ϕ is valid is an open question. We conjecture that
the property is not valid. Consider 〈[G]〉〈[G]〉ϕ: after the initial announcement,
coalition G has a consecutive announcement to make ϕ true. This announce-
ment, however, depends on the choice of A \ G in the first operator. In other
words, a consecutive announcement by G may vary depending on the initial
announcement by A \ G. Hence, it seems highly counterintuitive that G has a
single announcement that can incorporate all possible simultaneous announce-
ments by A \G in a general (infinite) case.
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Formula 〈G〉〈H〉ϕ → 〈G ∪H〉ϕ is a validity of GAL [Ågotnes et al., 2010].
Again, it is unknown whether the same property holds for coalition operators,
and, for the same reasons as for 〈[G]〉〈[G]〉ϕ → 〈[G]〉ϕ, we conjecture that the
corresponding formula is not valid in CAL.

We show, however, a generalisation of Proposition 4.

Proposition 5. 〈[G]〉〈[H]〉ϕ→ [〈A \ (G ∪H)〉]ϕ is valid.

Proof. Let Ms |= 〈[G]〉〈[H]〉ϕ for an arbitrary Ms. By Proposition 3, we have
Ms |= 〈[G ∪H]〉〈[H]〉ϕ. According to the semantics,

∃ψG∪H ,∀χA\(G∪H) : Ms |= ψG∪H ∧ [ψG∪H ∧ χA\(G∪H)]〈[H]〉ϕ.

This is equivalent to

∃ψG∪H ,∀χA\(G∪H) : Ms |= ψG∪H and

(Ms |= ψG∪H ∧ χA\(G∪H) implies M
ψG∪H∧χA\(G∪H)
s |= 〈[H]〉ϕ).

By Proposition 3, from M
ψG∪H∧χA\(G∪H)
s |= 〈[H]〉ϕ follows M

ψG∪H∧χA\(G∪H)
s |=

〈[G ∪H]〉ϕ. By propositional reasoning, we have

∃ψG∪H ,∀χA\(G∪H) : Ms |= ψG∪H and

(Ms |= ψG∪H ∧ χA\(G∪H) implies M
ψG∪H∧χA\(G∪H)
s |= 〈[G ∪H]〉ϕ),

which is equivalent to Ms |= 〈[G∪H]〉〈[G∪H]〉ϕ. Finally, By Proposition 4, the
latter implies Ms |= [〈A \ (G ∪H)〉]ϕ.

In the following, we sometimes consider model updates by agents without
presenting a formula that allows us to achieve the update, and instead we deal
with sets of states that agents can force to be in the updated model. We refer
to these sets as ‘strategies’ or ‘choices’.

To have this interchangeability, we require models to be bisimulation con-
tracted. In such models each state can be uniquely characterised by a formula
of EL, which is called a characteristic formula. The construction of character-
istic formulas is by induction and mimics the definition of bisimulation. Having
constructed characteristic formulas for each state in a model, we can take a
disjunction of them to uniquely characterise a subset of the set of states of the
model. In models that are not bisimulation contracted, characteristic formulas
cease to uniquely describe a state or a set. Hence there is no direct correspon-
dence between a strategy of agents and characteristic formulas, as agents may
‘choose’ a subset which may split some bisimulation equivalence class. More
on the construction of characteristic formulas and the correspondence between
them and agents’ announcements can be found in [Ågotnes and van Ditmarsch,
2011; van Ditmarsch et al., 2014; Galimullin et al., 2018].
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Also note that, due to the truthfulness condition of public announcements,
we require all strategies to include the current state, and therefore the cor-
responding equivalence class. Hence, if for a given agent a there are n a-
equivalence classes, then a has 2n−1 strategies: all possible combinations to
choose among remaining n − 1 equivalence classes. Strategies of groups are
intersections of strategies of individual agents.

For an example, consider model M in Figure 1. In state s agent a has two

t′ s t
¬p p ¬pb a

Figure 1: Model M , where a-equivalence classes are depicted by rounded
rectangles, and b-equivalence classes are depicted by dashed rounded

rectangles.

strategies: {s, t} and {t′, s, t}. Similarly, agent b’s strategies are {t′, s} and
{t′, s, t}. Strategies available to group {a, b} are intersections of strategies of
the agents from the group, i.e. {s}, {s, t}, {t′, s}, and {t′, s, t}.

Returning back to the properties of GAL and CAL, we next show that split-
ting an announcement by a unified coalition into consecutive announcements
by sub-coalitions may decrease their power to force certain outcomes. Whether
〈[G∪H]〉ϕ→ 〈[G]〉〈[H]〉ϕ is valid was mentioned as an open question in [Ågotnes
et al., 2016]. We settle this problem by presenting a counterexample.

Proposition 6. 〈[G ∪H]〉ϕ→ 〈[G]〉〈[H]〉ϕ is not valid.

Proof. Let G = {a}, H = {b}, and ϕ := Kb(p∧ q∧ r)∧¬Ka(p∧ q∧ r)∧¬Kc(p∧
q∧r). Formula ϕ says that agent b knows that the given propositional variables
are true, and agents a and c do not. Consider model Ms in Figure 2.

pqr

s

pq¬r
u

¬pqr
t

p¬qr
v

ca, c

c

b

Figure 2: Model M

By the semantics Ms |= 〈[{a, b}]〉ϕ if and only if ∃ψa,∃ψb,∀χc : Ms |= ψa ∧
ψb ∧ [ψa ∧ ψb ∧ χc]ϕ. Let ψa be Kaq, and ψb be Kb>. Observe that Ms |=
Kaq ∧ Kb>. This announcement leads to b learning that q. Moreover, c does
not know any formula that she can announce to avoid ϕ. An informal argument
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is as follows. By announcing Kaq agent a chooses a union of a-equivalence
classes {s, t, u} (and b chooses the whole model). Any simultaneous choice of c
includes {s, t, u} as a subset. Thus, intersection of {s, t, u} and any of unions of
c-equivalence classes is {s, t, u}, and ϕ is true in such a restriction of the model.

Let us show that Ms 6|= 〈[{a}]〉〈[{b}]〉ϕ, or, equivalently, Ms |= [〈{a}〉][〈{b}〉]¬ϕ.
According to the semantics, ∀ψa,∃χb,∃χc: Ms |= ψa → 〈ψa ∧χb ∧χc〉[〈{b}〉]¬ϕ.
Assume that for an arbitrary ψa, announcements by b and c are Kbp and Kc>
correspondingly. Then Ms |= ψa ∧ [ψa ∧ Kbp ∧ Kc>][〈{b}〉]¬ϕ. Note that no
matter what a announces, Kbp forces her to learn that p ∧ q ∧ r, and whatever
is announced in the updated model Mψa∧Kbp∧Kc>

s , a’s knowledge of p ∧ q ∧ r
and, hence, falsity of ϕ remains. Thus we reached a contradiction.

The same counterexample can be used to demonstrate that [〈A\(G∪H)〉]ϕ→
〈[G]〉〈[H]〉ϕ is not valid, where A \ (G ∪H) = {c}. In the proof of Proposition 6
we show that Ms |= 〈[{a, b}]〉ϕ. Using Proposition 9 we obtain Ms |= [〈c〉]ϕ. The
rest of the proof remains the same.

Corollary 7. [〈A \ (G ∪H)〉]ϕ→ 〈[G]〉〈[H]〉ϕ is not valid.

To the best of our knowledge, the group announcement version of Proposi-
tion 6 has not been considered. We show that the property does not hold for
GAL operators as well. To derive a contradiction, we use the intuition that
separated groups, while being able to force a certain configuration of a model
when united, may lack discerning power on their own. Contrast this to the proof
of Proposition 6, where the contradiction was derived on the basis that former
partners may spoil each other’s strategies when pitched against one another.

Proposition 8. 〈G ∪H〉ϕ→ 〈G〉〈H〉ϕ is not valid.

Proof. Consider the model3 in Figure 3.

s t u v

¬p p p ¬pa b a

s′ t′ u′ v′ w′

p ¬p p p ¬p
b a b a

c d c d

Figure 3: Model M1

Note that M1 is bisimulation contracted, and M1
t can be distinguished from

other pointed models in this proof by some distinguishing formula ϕ1. Also let
G = {a, d} and H = {b, c}. Next consider model M2 in Figure 4.

3The original idea of an infinite-grid counterexample is by Tim French (personal commu-
nication). Here we present its finite and reworked version.

11



s t u

¬p p pa b

t′ u′ v′ w′

¬p p p ¬p
a b a

d c

Figure 4: Model M2

Again, M2 is bisimulation contracted, and let some ϕ2 be a distinguish-
ing formula for M2

t . The union of all agents in model M1 can make ϕ2 true,
i.e. M1

t |= 〈{a, d} ∪ {b, c}〉ϕ2. Indeed, a possible mutual choice for the agents
is as follows: Xa = {s, t, u, v, t′, u′, v′, w′}, Xb = {s, t, u, s′, t′, u′, v′, w′}, Xc =
{s, t, u, s′, t′, u′, v′, w′}, and Xd = {s, t, u, v, t′, u′, v′, w′}. Hence the correspond-
ing group announcement reduce M1 to Xa∩Xb∩Xc∩Xd = {s, t, u, t′, u′, v′, w′}
which is exactly model M2.

Now we show that M1
t |= [{a, d}][{b, c}]¬ϕ2, or, informally, any successive

announcements by the corresponding groups do not result in M2. Since we are
interested only in group announcements that can lead to M2, and due to the
fact that M2 is bisimulation contracted, we do not consider announcements that
result in a model with fewer states than M2.

There are only two such strategies for {a, d}. First strategy is the trivial
one — a and d announce Ka> and Kd>. Such an announcement leaves M1

intact. It is easy to see that whatever {b, c} announce afterwards, they cannot
both retain only states of M2. The closest they can get to M2 is M3, which is
presented in Figure 5. Clearly, M3 is not bisimilar to M2, and hence M3

t 6|= ϕ2.

s t u

¬p p pa b

s′ t′ u′ v′ w′

p ¬p p p ¬p

c

b a b a

d c

Figure 5: Model M3

The second meaningful update of M1 by {a, d} is shown in Figure 6.
It might seem that the only difference between M2 and M4 is state v. Ob-

serve, however, that v is bisimilar to t′, and any announcement by {b, c} that
removes v will also remove t′ (see Figure 7).

Thus we showed that M1
t |= [{a, d}][{b, c}]¬ϕ2, which is equivalent to M1

t 6|=
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s t u v

¬p p p ¬pa b a

t′ u′ v′ w′

¬p p p ¬p
a b a

d c d

Figure 6: Model M4

s t u

¬p p pa b

u′ v′ w′

p p ¬p
b a

c

Figure 7: Model M5

〈{a, d}〉〈{b, c}〉ϕ2.

3.2 Boxes, Diamonds, and Church-Rosser

In this section we consider two rather straightforward results for coalition an-
nouncement operators, and demonstrate that the Church-Rosser property does
holds in neither GAL nor CAL (although it holds in APAL [Balbiani et al.,
2008]).

We start with the fact that if coalition G has an announcement such that
they can achieve ϕ no matter what agents outside of the coalition announce
at the same time, then for every possible announcement by A \ G there is a
corresponding ‘counter-announcement’ such that ϕ holds afterwards.

Proposition 9. 〈[G]〉ϕ→ [〈A \G〉]ϕ is valid.

Proof. Assume that for some arbitrary Ms we have that Ms |= 〈[G]〉ϕ. By
the semantics this is equivalent to ∃ψG,∀χA\G : Ms |= ψG ∧ [ψG ∧ χA\G]ϕ,
and the latter implies ∀χA\G,∃ψG : Ms |= ψG ∧ [ψG ∧ χA\G]ϕ. Using the
validity of PAL |= [ψ]ϕ ↔ (ψ → 〈ψ〉ϕ), we have that ∀χA\G,∃ψG : Ms |=
ψG ∧ (ψG ∧ χA\G → 〈ψG ∧ χA\G〉ϕ), which implies, by propositional reasoning,
∀χA\G,∃ψG : Ms |= χA\G → 〈χA\G ∧ ψG〉ϕ. The latter is Ms |= [〈A \ G〉]ϕ by
the semantics of CAL.

The other direction of Proposition 9 is not valid. An intuitive explanation is
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that even though A\G may have a ‘counter-announcement’ to every announce-
ment by G, they may, at the same time, lack the single ‘universal’ announcement
for all possible G’s announcements.

Proposition 10. [〈G〉]ϕ→ 〈[A \G]〉ϕ is not valid.

Proof. We present a counterexample. Consider the model in Figure 8.

t′ s t u

¬p p ¬p pb a b

Figure 8: Model M1

Pointed model M1
s can be described by formula ϕ1 := p∧ K̂b(¬p∧Ka¬p)∧

K̂a(¬p ∧ K̂bKap).
Let us also consider some submodels of M1 presented in Figure 9.

t′ s t
¬p p ¬pb a

s

p

Figure 9: Models M2 (top) and M3 (bottom)

Corresponding distinguishing formulas forM2
s andM3

s are ϕ2 := p∧K̂bKa¬p∧
K̂a(¬p ∧Kb¬p) and ϕ3 := p ∧Kap ∧Kbp.

Let G = {a}, A \G = {b}, and ϕ := ϕ1 ∨ ϕ2 ∨ ϕ3.
First we show that M1

s |= [〈a〉]ϕ. By the semantics of CAL this is equivalent
to ∀ψa,∃χb : Ms |= ψa → 〈ψa ∧ χb〉ϕ. Since M1 is a finite bisimulation con-
tracted model, there is only a finite number of non-equivalent model updates by
either agent. Hence, we will abstract away from particular formulas and consider
agents’ strategies instead. In the model, agent a has four possible strategies:
{s, t}, {t′, s, t}, {s, t, u}, and {t′, s, t, u}. Options {t′, s, t} and {t′, s, t, u} clearly
satisfy ϕ as agent b announces Kb> at the same time. If agent a chooses to
announce {s, t} or {s, t, u}, agent b can announce {t′, s} at the same time, and
such a joint announcement results in {s} that satisfies ϕ3.

Now, let us show that M1
s 6|= 〈[b]〉ϕ, which is equivalent to M1

s |= [〈b〉]¬ϕ.
Agent b has only two options — {t′, s, t, u} and {t′, s}. In the first case, agent
a simultaneously ‘chooses’ {s, t} that leads to ϕ being false. In the second case,
agent a announces Ka>, and ϕ is false in the resulting model.

The Church-Rosser principle, ♦�ϕ→ �♦ϕ, where ♦ and � are some modal
operators, corresponds to the confluence frame property ∀x, y, z(xRy ∧ xRz →
∃w(yRw∧zRw)) (see [Blackburn et al., 2001, Chapter 3]). We are interested in
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how group boxes and diamonds commute together. In Proposition 11 we show
that the generalised Church-Rosser principle does not hold for group announce-
ments4. An intuitive explanation of this fact may be that knowledge of agents
changes as a model is updated. Hence, they may lose their original strategies
and discerning power as a result of an announcement by some other group. In
other words, the order of announcements matters.

Proposition 11. 〈G〉[H]ϕ→ [H]〈G〉ϕ is not valid.

Proof. The counterexample model is presented in Figure 10.

u′ t′ s t u v

p ¬p p ¬p p ¬pa, b a a a, b c

t′ s t u

¬p p ¬p pa a a, b

Figure 10: Models M1 (top) and M2 (bottom)

Formula ϕ is K̂aKb¬p ∧ K̂a(K̂bp ∧ K̂b¬p), and M2
s |= ϕ and M1

s 6|= ϕ.
First we show thatM1

s |= 〈{a}〉[{b, c}]¬ϕ. Let a’s announcement beKa(¬p→
Kc¬p). Update of M1

s with this announcement (M1
s )Ka(¬p→Kc¬p) is shown in

Figure 11.

u′ t′ s t u

p ¬p p ¬p p
a, b a a a, b

Figure 11: Model (M1
s )Ka(¬p→Kc¬p)

Note that in this model states t and t′, and u and u′ became bisimilar.
Hence, no matter what agents b and c announce, they cannot get rid of u′

without removing u as well. In other words, agents b and c cannot make ϕ true.
This establishes M1

s |= 〈{a}〉[{b, c}]¬ϕ.
The remaining part of the proof is to show that M1

s 6|= [{b, c}]〈{a}〉¬ϕ, or,
equivalently, M1

s |= 〈{b, c}〉[{a}]ϕ. Let b and c’s announcement be Kb(¬p →
K̂bp) and Kc(p → (Kbp ∨ K̂c¬p)). Such a mutual announcement results in
model M2. Observe that in M2

s , since the whole model is an a-equivalence
class, agent a has no announcement to modify it. Moreover, M2

s |= ϕ, and
hence M1

s |= 〈{b, c}〉[{a}]ϕ.

The generalised Church-Rosser principle is not valid in CAL as well.

Proposition 12. 〈[G]〉[〈H〉]ϕ→ [〈H〉]〈[G]〉ϕ is not valid.

4Note that in [Ågotnes et al., 2010] (as well as in [van Ditmarsch, 2012]) it was claimed
that the generalised Church-Rosser principle holds for GAL.
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Proof. Consider models in Figures 8 and 9. Also let G = {a}, H = {b}, and

ϕ2 := p ∧ K̂b¬p ∧ K̂a¬p, ϕ3 := p ∧ Kap ∧ Kbp, and ϕ := ϕ2 ∨ ϕ3. Note that
M2
s |= ϕ2 and M3

s |= ϕ3.
First we show that M1

s |= 〈[{a}]〉[〈{b}〉]ϕ, which means that agent a has a
strategyXa such that whichever strategyXb agent b simultaneously implements,
[〈{b}〉]ϕ holds in the resulting model. Consider a’s strategy Xa = {t′, s, t}. Agent
b has only two options in M1

s : X1
b = {t′, s, t, u} and X2

b = {t′, s}. Two possible
resulting models are presented in Figure 12

t′ s t
¬p p ¬pb a

st′

p¬p b

Figure 12: Resulting Models (M1
s )Xa∩X1

b (top) and (M1
s )Xa∩X2

b (bottom)

Next let us examine further model updates by coalition announcement [〈{b}〉].
Again, there are only two options for agent b in (M1

s )Xa∩X1
b : Y 1

b = {t′, s, t} and
Y 2
b = {t′, s}. On Y 1

b agent a responds with the same strategy, and on Y 2
b she

responds with {s, t} that results in the model with single state s. In both cases ϕ

holds. In (M1
s )Xa∩X2

b agent b has only trivial strategy, and a responds with {s}
yielding the single-state model and making ϕ true. Hence, M1

s |= 〈[{a}]〉[〈{b}〉]ϕ.
Now we show thatM1

s 6|= [〈{b}〉]〈[{a}]〉ϕ, or, equivalently, thatM1
s |= 〈[{b}]〉[〈{a}〉]¬ϕ.

Let b’s strategy be the trivial one, i.e. Xb = {t′, s, t, u}. Results of updates of
M1
s with various a’s strategies are presented in Figure 13.

s t
p ¬pa

s t u

p ¬p pa b

t′ s t
¬p p ¬pb a

t′ s t u

¬p p ¬p pb a b

Figure 13: From top to bottom: models (M1
s )Xb∩X1

a , (M1
s )Xb∩X2

a , (M1
s )Xb∩X3

a ,

and (M1
s )Xb∩X4

a
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Finally, we consider further updates of the models in Figure 13 by [〈{a}〉]. It

is easy to see that any further announcements by a in models (M1
s )Xb∩X1

a and

(M1
s )Xb∩X2

a can be countered by the trivial strategy of b so that ¬ϕ is true in

resulting models. In model (M1
s )Xb∩X3

a agent b responds with {t′, s, t} on a’s
strategy {s, t}, and with {t′, s} on a’s {t′, s, t}; in both restrictions ϕ is false. In

(M1
s )Xb∩X4

a agent a has four strategies: {t′, s, t, u}, {t′, s, t}, {s, t, u}, and {s, t}.
To make ϕ false, agent b responds with {t′, s} to the first two strategies, and
with the trivial strategy to the last two. Thus, M1

s |= 〈[{b}]〉[〈{a}〉]¬ϕ.

3.3 Interaction Between Coalition and Group Announce-
ments

We start this section with somewhat basic results concerning interaction between
GAL and CAL operators.

In Proposition 13 formula 1 states that if a coalition can force some outcome,
then they can achieve the outcome by a group announcement. Property 2 shows
that coalition and group announcements are equivalent for the grand coalition
A. That an anti-coalition cannot undo the result of a coalition announcement
is presented in 3. Finally, property 4 states that if a coalition can force some
outcome, then they can achieve the outcome by making one additional group
announcement. The converse, however, is not valid (formula 5).

Proposition 13. 1–4 are valid, and 5 is not valid.

1. 〈[G]〉ϕ→ 〈G〉ϕ,

2. 〈[A]〉ϕ↔ 〈A〉ϕ,

3. 〈[G]〉ϕ↔ 〈[G]〉[A \G]ϕ,

4. 〈[G]〉ϕ→ 〈[G]〉〈G〉ϕ,

5. 〈[G]〉〈G〉ϕ→ 〈[G]〉ϕ.

Proof. 1. If G can make ϕ true no matter what agents from A \G simulta-
neously announce, they can make ϕ true if all agents from coalition A \G
announce >.

2. Trivially by the semantics of the grand coalition.

3. (⇒): We prove the contrapositive. Let Ms |= [〈G〉]〈A \ G〉ϕ for some
arbitrary Ms. By the semantics of CAL we have that ∀ψG,∃χA\G,∃χ′A\G:

Ms |= ψG → 〈ψG ∧ χA\G〉〈χ′A\G〉ϕ. Due to PAL validity 〈ψ〉〈χ〉ϕ ↔
〈ψ ∧ [ψ]χ〉ϕ the latter is equivalent to

Ms |= ψG → 〈ψG ∧ χA\G ∧ [ψG ∧ χA\G]χ′A\G〉ϕ.

Consider the subformula ψG ∧ χA\G ∧ [ψG ∧ χA\G]χ′A\G, and recall that

χ′A\G stands for
∧
i∈A\GKiχ

′
i. Using PAL axiom [ψ](ϕ∧χ)↔ [ψ]ϕ∧ [ψ]χ,
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we obtain ψG ∧ χA\G ∧
∧
i∈A\G[ψG ∧ χA\G]Kiχ

′
i. From the fact that

[ψ]Kaϕ↔ (ψ → Ka[ψ]ϕ), we get

ψG ∧ χA\G ∧
∧

i∈A\G

(ψG ∧ χA\G → Ki[ψG ∧ χA\G]χ′i),

which is equivalent to ψG ∧ χA\G ∧
∧
i∈A\GKi[ψG ∧ χA\G]χ′i by proposi-

tional reasoning.

In order to form a single announcement by A \ G, we note that χA\G
is an abbreviation for

∧
i∈A\GKiχi, and using EL validity Ka(ϕ ∧ ψ) ↔

Kaϕ ∧ Kaψ, we have ψG ∧
∧
i∈A\GKi(χi ∧ [ψG ∧

∧
i∈A\GKiχi]χ

′
i), the

second conjunct of which is a knowledge formula of A \G and we denote
it as χ∗A\G. Substituting the result for ψG ∧ χA\G ∧ [ψG ∧ χA\G]χ′A\G in

the original formula, we get ∀ψG,∃χ∗A\G : Ms |= ψG → 〈ψG ∧ χ∗A\G〉ϕ.

The latter is equivalent to Ms |= [〈G〉]ϕ by the semantics of CAL.

(⇐): Immediate by the fact that A \G can announce >A\G.

4. Immediate by the fact that G can announce >G after the coalition an-
nouncement.

5. The counterexample is the same as in Proposition 10 with G = {b}. In-
deed, (M1, s) |= 〈[{b}]〉〈{b}〉ϕ, which is equivalent to ∃ψb,∀χa,∃ψ′b: Ms |=
ψb ∧ [ψb ∧ χa]〈ψ′b〉ϕ. Let ψb := Kb>. Then we have that ∀χa,∃ψ′b:
Ms |= Kb> ∧ [Kb> ∧ χa]〈ψ′b〉ϕ, or ∀χa,∃ψ′b: Ms |= [χa]〈ψ′b〉ϕ. The rest
of the proof follows the one of Proposition 10 with substitution of b’s
simultaneous choice {t′, s} with the consecutive choice {s}.

Whether CAL operators can be expressed in GAL is an open problem. The
most probable definition of coalition announcements in terms of group announce-
ments is 〈[G]〉ϕ↔ 〈G〉[A \G]ϕ. The validity of this formula was stated to be an
open question in [van Ditmarsch, 2012; Ågotnes et al., 2016]. It was shown in
[French et al., 2019] that the right-to-left direction of the formula is not valid.
Here we prove the validity of the other direction.

Consider the left-to-right direction of the formula. In the antecedent all
agents make a simultaneous announcement, whereas in the consequent agents
from A\G know the announcement ψG made by G. Thus, in the updated model
MψG
s the agents in A \G may have learned some new epistemic formulas χA\G

that they did not know before the announcement. However, since ψG holds in
the initial model, and χA\G holds in the updated one, agents from A \ G can
always make an announcement in the initial model that they know that after the
announcement of ψG, χA\G is true. In other words, the set of announcements
agents from A \G can make after G has announced ψG is a subset of the set of
announcements that A \ G can make in the initial model simultaneously with
G.

Proposition 14. 〈[G]〉ϕ→ 〈G〉[A \G]ϕ is valid.
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Proof. Assume that for some pointed model Ms it holds that Ms |= 〈[G]〉ϕ. By
the semantics of CAL this is equivalent to

∃ψG,∀χA\G : Ms |= ψG ∧ [ψG ∧ χA\G]ϕ.

Since χA\G quantifies over all possible announcements by A\G, it also quantifies
over a specific subset of these announcements —

∧
i∈A\GKi[ψG]χ′i for some ψG

and for all χ′i ∈ LPAL.
Hence ∃ψG ∈,∀χA\G: Ms |= ψG ∧ [ψG ∧ χA\G]ϕ implies

∃ψG ∈ LGPAL,∀χ′i ∈ LPAL : Ms |= ψG ∧ [ψG ∧
∧

i∈A\G

Ki[ψG]χ′i]ϕ.

Let us consider announcement ψG ∧
∧
i∈A\GKi[ψG]χ′i. By propositional

reasoning it is equivalent to ψG ∧ (ψG →
∧
i∈A\GKi[ψG]χ′i), which, in turn, is

equivalent to ψG ∧
∧
i∈A\G(ψG → Ki[ψG]χ′i).

Applying PAL axiom [ψ]Kaϕ↔ (ψ → Ka[ψ]ϕ), we get ψG∧
∧
i∈A\G[ψG]Kiχ

′
i.

The latter is equivalent to ψG ∧ [ψG]
∧
i∈A\GKiχ

′
i due to the fact that [ψ](ϕ ∧

χ) ↔ [ψ]ϕ ∧ [ψ]χ is also an axiom of PAL. Finally, denoting
∧
i∈A\GKiχ

′
i by

χ′A\G, we have that

∃ψG,∀χ′A\G : Ms |= ψG ∧ [ψG ∧ [ψG]χ′A\G]ϕ.

Using axiom [ψ][χ]ϕ↔ [ψ ∧ [ψ]χ]ϕ, we get

∃ψG,∀χ′A\G : Ms |= ψG ∧ [ψG][χ′A\G]ϕ.

Due to validity ψ ∧ [ψ]ϕ ↔ 〈ψ〉ϕ, this is equivalent to ∃ψG,∀χ′A\G : Ms |=
〈ψG〉[χ′A\G]ϕ. The latter is equivalent Ms |= 〈G〉[A \ G]ϕ by the semantics of
GAL.

4 A Logic of Coalition and Relativised Group
Announcements

A sound and complete axiomatisation of CAL is an open question. One of
the reasons why finding one seems hard is the inherent alternation of quan-
tifiers in the semantics of the coalition announcement operators. In order to
mitigate this, we introduce relativised group announcements that allow us to
separate a coalition’s announcements from counter-announcements by their op-
ponents. The resulting formalism, coalition and relativised group announcement
logic (CoRGAL), is sound and complete. CoRGAL is reminiscent of alternating-
time temporal dynamic epistemic logic (ATDEL) [de Lima, 2014]. The latter,
however, is a more PDL-style logic [Harel et al., 2000] with postconditions and
factual change. Moreover, in ATDEL agents are not required to know the for-
mulas they announce.
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The completeness proof given in this section deviates from a standard ap-
proach for logics of quantified announcements (see, for example, [Balbiani and
van Ditmarsch, 2015] and [van Ditmarsch et al., 2017]). Instead of treating
public announcements as dynamic operators, we treat them as static relations
given in a model akin to any other standard box modality. Originally, such an
approach was conceived in [Wang and Cao, 2013], where the authors presented
a complete axiomatisation of PAL that does not rely on reduction axioms. We
extend this technique to the case of quantified announcements, and as a result
quantification over possible announcements becomes the quantification over ar-
rows in a model. The standard completeness proof for CoRGAL can be found
in [Galimullin, 2019, Chapter 6].

4.1 Relativised Group Announcements5

Let P denote a countable set of propositional variables, and A be a finite set of
agents.

Definition 7 (Language of CoRGAL). The language of coalition and relativised
group announcement logic LCoRGAL is as follows:

LCoRGAL 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [G,ϕ]ϕ | [〈G〉]ϕ

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional
logic and conventions for deleting parentheses hold. Diamond version of the
operator [G,χ]ϕ is defined as 〈G,χ〉ϕ := ¬[G,χ]¬ϕ.

Relativised group announcement [G,χ]ϕ says that ‘given true announcement
χ, whatever agents from G announce at the same time, they cannot avoid ϕ’.
The diamond is read as ‘given any announcement χ, there is a simultaneous
announcement by G such that ϕ holds in the resulting model’.

Compare the intuitive reading of [G,χ]ϕ to the one of [〈G〉]ϕ: ‘whatever
agents from G announce, there is a simultaneous announcement by the agents
from A \ G such that ϕ holds in the resulting model’. Though they may look
similar, the crucial difference is that there are two quantifiers in the case of
[〈G〉]ϕ and only one in the case of [G,χ]ϕ. This difference becomes clearer in
the following formal definition of the semantics.

Definition 8 (Semantics of CoRGAL). Let Ms be a pointed model. The se-
mantics of coalition and relativised group announcement logic is as in Definition
3 plus the following.

Ms |= [G,χ]ϕ iff Ms |= χ and ∀ψG : Ms |= [ψG ∧ χ]ϕ
Ms |= 〈G,χ〉ϕ iff Ms |= χ implies ∃ψG : Ms |= 〈ψG ∧ χ〉ϕ

Note that as in GAL and CAL we restrict the quantification in [G,χ]ϕ to
formulas of LGPAL.

5In [French et al., 2019] the authors use the same operators under the name of ‘half-
coalition’ announcements. In this paper we use different syntax, which we think is more
succinct.
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Observe that the semantics of coalition announcement operators are given
in a ‘classic’ way. An equivalent definition is possible using relativised group
announcements.

Ms |= [〈G〉]ϕ iff ∀ψG : Ms |= 〈A \G,ψG〉ϕ
Ms |= 〈[G]〉ϕ iff ∃ψG : Ms |= [A \G,ψG]ϕ

Relativised group announcements help us to split coalition announcements,
and treat the coalition’s announcement and anti-coalition responses separately.

Next we show some intuitive properties of relativised group announcements.

Proposition 15. All of the following are valid:

1. [G]ϕ↔ [G,>]ϕ

2. [∅, ψ]ϕ↔ 〈ψ〉ϕ

3. [A,ψ]ϕ→ 〈ψ〉ϕ

4. ¬χ→ 〈G,χ〉ϕ

Proof. All proofs are trivial applications of the definition of semantics (Defini-
tion 8).

The first property states that classic group announcements can be defined
using relativised group announcements. Indeed, announcing a tautology in con-
junction with an announcement by a group does not have any additional effect
on the resulting model. Validities 2 and 3 demonstrate the relation between
public announcements and relativised group announcements with empty and
grand groups. Note that the property 3 holds only in one direction. A coun-
terexample for the other direction would be a model with two states such that p
holds only in one of them, agent’s a relation is universal, and agent’s b relation
is the identity. If ψ := p ∨ ¬p and ϕ := ¬Kap, then 〈p ∨ ¬p〉¬Kap is true, and
[{a, b}, p ∨ ¬p]¬Kap is false in the p-state (since agent b can announce Kbp).
Formula 4 says that if a false formula is being announced, we can always add a
group announcement such that any ϕ holds vacuously afterwards.

4.2 Axiom System of CoRGAL

In this section, we present an axiomatisation of CoRGAL and show its sound-
ness. The axiomatisation is based on the axiom system for PAL without reduc-
tion axioms [Wang and Cao, 2013], and have two additional axioms and two
additional rules of inference.

There are multiple rules of inference we would like to use in an axiomatisation
to deduce formulas with relativised group and coalition announcements. It is
easy to see that rule

If ∀ψG :` χ ∧ [ψG ∧ χ]ϕ, then ` [G,χ]ϕ

21



is truth preserving. So is, for example,

If ∀ψG :` Ka(χ ∧ [ψG ∧ χ]ϕ), then ` Ka([G,χ]ϕ),

or
If ∀ψG :` τ → [θ](χ ∧ [ψG ∧ χ]ϕ), then ` τ → [θ]([G,χ]ϕ)

and so on. In order to have one general rule of inference that will encapsulate
all these variations, necessity forms are introduced.

Definition 9. (Necessity forms) Let ϕ ∈ LCoRGAL, then necessity forms are
inductively defined as follows:

η(]) ::= ] | ϕ→ η(]) | Kaη(]) | [ϕ]η(]).

The dual of a necessity form η(ϕ) is a possibility form η{ϕ} that is defined
as η{ϕ} := ¬η(¬ϕ). The atom ], which acts as a placeholder, has a unique
innermost occurrence in each necessity form. Note that ] is not a part of the
language, i.e. ] 6∈ LCoRGAL, and hence a necessity (possibility) form is not
a formula per se. However, it becomes one, once ] is replaced by some ϕ ∈
LCoRGAL. The result of the replacement of ] with ϕ in η(]) is denoted as η(ϕ)
and is inductively defined as follows:

• ](ϕ) = ϕ,

• (ψ → η)(ϕ) = ψ → η(ϕ),

• (Kaη)(ϕ) = Kaη(ϕ),

• ([ψ]η)(ϕ) = [ψ]η(ϕ).

Definition 10 (Axiomatisation of CoRGAL). The axiom system for CoRGAL
is an extension of PAL with axioms and rules of inference for relativised group
and coalition announcements.

(A0) propositional tautologies,
(A1) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),
(A2) Kaϕ→ ϕ,
(A3) Kaϕ→ KaKaϕ,
(A4) ¬Kaϕ→ Ka¬Kaϕ,
(A5) [ϕ](ψ → χ)↔ ([ϕ]ψ → [ϕ]χ),
(A6) (p→ [ψ]p) ∧ (¬p→ [ψ]¬p),
(A7) 〈ψ〉ϕ↔ (ψ ∧ [ψ]ϕ),
(A8) 〈ψ〉Kaϕ→ Ka[ψ]ϕ,
(A9) Ka[ψ]ϕ→ [ψ]Kaϕ,
(A10) [G,χ]ϕ→ χ ∧ [ψG ∧ χ]ϕ for any ψG,
(A11) [〈G〉]ϕ→ 〈A \G,ψG〉ϕ for any ψG,
(R0) If ` ϕ and ` ϕ→ ψ, then ` ψ,
(R1) If ` ϕ, then ` Kaϕ,
(R2) If ` ϕ, then ` [ψ]ϕ,
(R3) If ∀ψG :` η(χ ∧ [ψG ∧ χ]ϕ), then ` η([G,χ]ϕ),
(R4) If ∀ψG :` η(〈A \G,ψG〉ϕ), then ` η([〈G〉]ϕ).
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We call CoRGAL the smallest subset of LCoRGAL that contains all the ax-
ioms A0 – A11 and is closed under rules of inference R0 – R4. Elements of
CoRGAL are called theorems. Note that R3 and R4 are infinitary rules: they
require an infinite number of premises.

Axiom A5 is a stronger version of a classic modal distributivity axiom for
public announcements. That no public announcement can alter the value of a
propositional variable is captured in A6. A7 expresses the fact that the exe-
cution of an announcement is deterministic, and that the precondition for an
announcement to be executed is truthfulness of that announcement. Axiom A8
is usually called in literature no miracles, and means that if an agent learns ϕ
after an announcement of ψ, then she knows that after any announcement of
ψ, ϕ will hold. Perfect recall is expressed in A9: if an agent knows that ϕ will
hold after an announcement, then she will know ϕ after that announcement.
Axiom A10 says that if given some χ, agents from G cannot avoid ϕ no matter
what they announce, they cannot avoid ϕ by making any particular announce-
ment in this situation. The property expressed by A11 is as follows: if for every
announcement by G there is a counter-announcement by A \ G, then for some
particular announcement ψG by G there is a counter-announcement by A \ G.
Rules R3 and R4 demonstrate how to infer formulas with relativised group and
coalition announcements from an infinite number of premises.

Proposition 16. Axioms A10 and A11 are valid.

Proof. Follows directly from the definition of semantics (Definition 8). We just
show the validity of (A11).

Assume that for some arbitrary pointed model Ms is holds that Ms |= [〈G〉]ϕ.
By the semantics this is equivalent to ∀ψG,∃χA\G: Ms |= ψG → 〈ψG ∧χA\G〉ϕ.
Since ψG quantifies over all epistemic formulas known to G, we can choose any
particular ψG. Hence, we have that ∃χA\G: Ms |= ψG → 〈ψG ∧ χA\G〉ϕ, which
is equivalent to Ms |= 〈A \G,ψG〉ϕ by the semantics.

Proposition 17. R3 and R4 are truth-preserving.

Proof. See Appendix B.

Theorem 18 (Soundness). For all ϕ ∈ LCoRGAL, if ϕ ∈ CoRGAL, then ϕ is
valid.

Proof. Soundness of A0–A4, R0, and R1 is due to soundness of EL. Axioms
A5–A9 and rule of inference R2 are sound, since PAL is sound [Wang and Cao,
2013]. Soundness of R3 and R4 follows from Proposition 17, and validity of A10
and A11 is shown in Proposition 16.

Note that in the axiomatisation of CoRGAL we do not include necessitation
rules for relativised group and coalition announcements. In the next two lemmas
we show that they are actually derivable in CoRGAL.
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Lemma 19. If ` ϕ, then ` 〈G,χ〉ϕ.

Proof.

1. ϕ Given

2. [>G ∧ χ]ϕ R2

3. [>G ∧ χ]ϕ↔ (χ→ 〈>G ∧ χ〉ϕ) A7

4. χ→ 〈>G ∧ χ〉ϕ R0 (2) and (3)

5. (χ→ 〈>G ∧ χ〉ϕ)→ 〈G,χ〉ϕ Contraposition of A10

6. 〈G,χ〉ϕ R0 (4) and (5)

Lemma 20. If ` ϕ, then ` [〈G〉]ϕ.

Proof.

1. ϕ Given

2. {〈A \G,ψG〉ϕ | ψG ∈ LGPAL} From Lemma 19

3. [〈G〉]ϕ R4

In the following lemma, which will be used in the sequel, we present an
example of a derivation of a CoRGAL theorem.

Lemma 21. 〈ψ〉(ϕ ∧ χ)↔ 〈ψ〉ϕ ∧ 〈ψ〉χ is provable in CoRGAL.

Proof.

1. [ψ](ϕ→ ¬χ)↔ ([ψ]ϕ→ [ψ]¬χ) A5

2. [ψ]¬(ϕ ∧ χ)↔ ¬([ψ]ϕ ∧ ¬[ψ]¬χ) Definition of →
3. 〈ψ〉(ϕ ∧ χ)↔ ([ψ]ϕ ∧ 〈ψ〉χ) Def. of 〈ψ〉 and prop. reasoning

4. 〈ψ〉(ϕ ∧ χ)↔ ([ψ]ϕ ∧ ψ ∧ [ψ]χ) A7

5. 〈ψ〉(ϕ ∧ χ)↔ (〈ψ〉ϕ ∧ 〈ψ〉χ) A7 twice

4.3 Extended Semantics

In order to prove completeness, we make a detour through extended epistemic
models. First, we show the completeness of CoRGAL relative to extended mod-
els, and then argue that these models are equivalent to the underlying classic
ones.

Before we start with the main part of the proof, we define the size of a
CoRGAL formula, which will be used in arguments based on induction.

Definition 11 (Size). The size of some formula ϕ ∈ LCoRGAL is defined as
follows:
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1. Size(p) = 1,

2. Size(¬ϕ) = Size(Kaϕ) = Size([G,χ]ϕ) = Size([〈G〉]ϕ) = Size(ϕ) + 1,

3. Size(ϕ ∧ ψ) = Size(ϕ) + Size(ψ) + 1,

4. Size([ψ]ϕ) = Size(ψ) + 3 · Size(ϕ).

The [, ]-depth is defined as follows:

1. d[,](p) = 0,

2. d[,](¬ϕ) = d[,](Kaϕ) = d[,]([〈G〉]ϕ) = d[,](ϕ),

3. d[,](ϕ ∧ ψ) = max{d[,](ϕ), d[,](ψ)},

4. d[,]([ψ]ϕ) = d[,](ψ) + d[,](ϕ),

5. d[,]([G,χ]ϕ) = d[,](ϕ) + d[,](χ) + 1.

The [〈〉]-depth is the same as [, ], with the following exceptions.

1. d[〈〉]([G,χ]ϕ) = d[〈〉](ϕ) + d[〈〉](χ),

2. d[〈〉]([〈G〉]ϕ) = d[〈〉](ϕ) + 1.

Definition 12 (Size Relation). The binary relation <Size[,],[〈〉] between ϕ,ψ ∈
LCoRGAL is defined as follows:

ϕ <Size[,],[〈〉] ψ iff d[〈〉](ϕ) < d[〈〉](ψ), or, otherwise, d[〈〉](ϕ) = d[〈〉](ψ), and either

d[,](ϕ) < d[,](ψ), or d[,](ϕ) = d[,](ψ) and Size(ϕ) < Size(ψ). The relation is a
well-founded strict partial order between formulas. Note that for all epistemic
formulas ψ we have that d[,](ψ) = d[〈〉](ψ) = 0.

Lemma 22. Let ϕ,ψ, χ ∈ LCoRGAL. The following inequalities hold.

1. ϕ <Size[,],[〈〉] ¬ϕ,

2. ϕ <Size[,],[〈〉] ϕ ∧ χ,

3. ϕ <Size[,],[〈〉] Kaϕ,

4. ϕ <Size[,],[〈〉] [ψ]ϕ and ψ <Size[,],[〈〉] [ψ]ϕ,

5. χ ∧ [ψG ∧ χ]ϕ <Size[,],[〈〉] [G,χ]ϕ,

6. 〈A \G,ψG〉ϕ <Size[,],[〈〉] [〈G〉]ϕ.

Proof. See Appendix B.

Now, we are ready to define extended epistemic models and tie them together
with the classic ones.

Definition 13 (Extended Epistemic Model). An extended epistemic model M
is a tuple (S, ∼, V, { ψ−→| ψ ∈ LCoRGAL}), where

ψ−→ is a binary relation (possibly
empty) over S for every ψ. Unless otherwise stated, in this section we deal with
extended epistemic models, and use M to denote the underlying epistemic model
(S,∼, V ).
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Next, we define the semantics of CoRGAL on extended epistemic models.

Definition 14 (Semantics of CoRGAL). LetM = (S,∼, V, { ψ−→| ψ ∈ LCoRGAL})
be an extended epistemic model. The semantics of coalition and relativised
group announcement logic is the same as in Definition 8 with the only exception
for public announcement.

Ms |= [ψ]ϕ iff for all t ∈ S : s
ψ−→ t implies Mt |= ϕ

As it is clear from a font used for a model — M or M — which semantics
is being employed, we use the same symbol |= for both extended and usual
semantics. The usual semantics and the semantics with extended epistemic
models do not generally coincide [Wang and Cao, 2013]. In order to make them
equivalent, we restrict the class of extended epistemic models.

Definition 15 (Normal Extended Epistemic Model). An extended model M
is called normal if the following holds for all s and t:

U-Functionality For any ψ ∈ LCoRGAL, ifMs |= ψ, then there is a unique

t such that s
ψ−→ t. If Ms 6|= ψ, then there are no outgoing ψ-arrows at s.

U-Invariance If s
ψ−→ t, then for all p ∈ P : Ms |= p if and only if Mt |= p.

U-Zig If for some a ∈ A it holds that s ∼a s′, s
ψ−→ t, and s′

ψ−→ t′, then
t ∼a t′.

U-Zag If s
ψ−→ t and t ∼a t′, then there exists an s′ such that s ∼a s′ and

s′
ψ−→ t′.
An extended model is called ψ-normal if U-functionality holds for a partic-

ular ψ.

Next lemma shows the equivalence of ψ-updates and ψ-transitions in normal
extended models.

Lemma 23 (Lemma 35 of [Wang and Cao, 2013]). Let some ψ ∈ LCoRGAL
and a ψ-normal extended model M be given. We have that Mψ

s � Mt, if two
conditions hold:

1. s
ψ−→ t,

2. for all u ∈ S: Mu |= ψ if and only if Mu |= ψ.

Now we show that classic and extended semantics for normal models coin-
cide.

Theorem 24. For all ϕ ∈ LCoRGAL, all normal extended epistemic modelsM,
and all s in M, Ms |= ϕ if and only if Ms |= ϕ.

Proof. The proof is by induction on <Size[,],[〈〉]-size of ϕ. Classic and extended
semantics are the same for boolean and knowledge formulas.

Case [ψ]ϕ. (⇒). Assume that Ms |= [ψ]ϕ. According to the definition of

semantics, this is equivalent to the fact that for all t: s
ψ−→ t implies Mt |= ϕ.
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If Ms 6|= ψ, then, by the induction hypothesis, Ms 6|= ψ and hence Ms |= [ψ]ϕ
for any ϕ.

Suppose that Ms |= ψ. By U-Functionality, there is a unique t such that

s
ψ−→ t and Mt |= ϕ. Using Lemma 22 and the induction hypothesis twice,

we yield Ms |= ψ, and by Lemma 23 we have that Mψ
s |= ϕ. Finally, by the

semantics we obtain Ms |= 〈ψ〉ϕ which implies Ms |= [ψ]ϕ.
(⇐). Let Ms |= [ψ]ϕ, and let Ms 6|= ψ. Then, by the induction hypothesis we

have that Ms 6|= ψ. Since M is a normal extended model, by U-Functionality
there are no outgoing ψ-arrows at s, which is equivalent to Ms |= [ψ]ϕ for all
ϕ by the semantics.

Let Ms |= [ψ]ϕ and let Ms |= ψ. By Lemma 22 and the induction hypothesis
we have that Ms |= ψ, and by U-Functionality it holds that there is a unique

t ∈ S such that s
ψ−→ t. By the induction hypothesis and Lemma 23, this is

equivalent to Mψ
s �Mt. The latter means that for all ϕ ∈ LCoRGAL, Mψ

s |= ϕ
if and only if Mt |= ϕ. By the induction hypothesis, Mψ

s |= ϕ if and only

if Mt |= ϕ. From Ms |= ψ, s
ψ−→ t, and Mt |= ϕ by the semantics and

U-Functionality, we have that Ms |= [ψ]ϕ.
Case [G,ψ]ϕ. (⇒). Assume thatMs |= [G,ψ]ϕ. According to the definition

of semantics, this is equivalent to ∀ψG: Ms |= ψ∧ [ψG∧ψ]ϕ. By Lemma 22 and
the induction hypothesis, the latter is equivalent to ∀ψG: Ms |= ψ ∧ [ψG ∧ ψ]ϕ,
which is Ms |= [G,ψ]ϕ by the semantics.

(⇐). Let Ms |= [G,ψ]ϕ. By the semantics this is equivalent to Ms |= ψ and
Ms |= [ψ ∧ ψG]ϕ for all ψG. By Lemma 22 and the induction hypothesis, we
have Ms |= ψ and Ms |= [ψ ∧ ψG]ϕ, which is equivalent to Ms |= [G,ψ]ϕ by
the semantics.

Case [〈G〉]ϕ. (⇒). Assume thatMs |= [〈G〉]ϕ. According to the definition of
semantics, this is equivalent to ∀ψG: Ms |= 〈A \ G,ψG〉ϕ. By Lemma 22 and
the induction hypothesis, the latter is equivalent to ∀ψG: Ms |= 〈A \G,ψG〉ϕ,
which is Ms |= [〈G〉]ϕ by the semantics.

(⇐). Let Ms |= [〈G〉]ϕ. By the semantics this is equivalent to Ms |= 〈A \
G,ψG〉ϕ for all ψG. By Lemma 22 and the induction hypothesis, we haveMs |=
〈A \G,ψG〉ϕ, which is equivalent to Ms |= [〈G〉]ϕ by the semantics.

4.4 Completeness I: Theories and Lindenbaum Lemma

In order to prove the Lindenbaum Lemma, we expand and modify proofs from
[Balbiani et al., 2008] and [Goldblatt, 1982, Chapter 2].

First, we prove a useful auxiliary lemma.

Lemma 25. Let ϕ,ψ ∈ LCoRGAL. If ϕ→ ψ is a theorem, then η(ϕ)→ η(ψ) is
a theorem as well.

Proof. See Appendix B.

Next, we introduce theories that will be used in the construction of the
canonical model.
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Definition 16 (Theory). A set of formulas x is called a theory if and only if it
contains CoRGAL, and is closed under R0, R3, and R4. A theory x is consistent
if and only if there is no ϕ ∈ LCoRGAL such that ϕ ∧ ¬ϕ ∈ x, and is maximal
if and only if for all ϕ ∈ LCoRGAL it holds that either ϕ ∈ x or ¬ϕ ∈ x. The
smallest theory is CoRGAL itself.

We will also use the following equivalent definition of the consistency of x.
Theory x is consistent if and only if there is no ϕ such that ϕ,¬ϕ ∈ x. To see
that this definition is equivalent to the one in Definition 16 it is enough notice
that ϕ → (¬ϕ → ϕ ∧ ¬ϕ) ∈ x, ϕ ∧ ¬ϕ → ϕ ∈ x, ϕ ∧ ¬ϕ → ¬ϕ ∈ x, and x is
closed under R0.

Note that theories are not closed under necessitation rules. The reason
for this is that while these rules preserve validity, they do not preserve truth,
whereas R0, R3, and R4 preserve both validity and truth.

Lemma 26. Let x be a theory, ϕ,ψ ∈ LCoRGAL, and a ∈ A. The following are
theories: x + ϕ = {ψ | ϕ → ψ ∈ x},Kax = {ϕ | Kaϕ ∈ x}, and [ϕ]x = {ψ |
[ϕ]ψ ∈ x}.

Proof. See Appendix B.

Lemma 27. For any ϕ ∈ LCoRGAL and any theory x, we have x ⊆ x+ ϕ.

Proof. Let ψ ∈ x for some ψ ∈ LCoRGAL. Since x is a theory, ψ → (ϕ→ ψ) ∈ x.
Moreover, ϕ→ ψ ∈ x as x is closed under R0. By Lemma 26, ψ ∈ x+ϕ.

Proposition 28. Let ϕ ∈ LCoRGAL and x be a theory. Then x+ϕ is consistent
if and only if ¬ϕ 6∈ x.

Proof. (⇒). Suppose to the contrary that x + ϕ is consistent and ¬ϕ ∈ x.
First, note that since ϕ → ϕ ∈ x, we have ϕ ∈ x + ϕ. Then observe that
¬ϕ ∈ x + ϕ by Lemma 27. Since x + ϕ contains all propositional tautologies,
ϕ → (¬ϕ → ϕ ∧ ¬ϕ) ∈ x + ϕ. Applying R0 twice, we yield ϕ ∧ ¬ϕ ∈ x + ϕ,
which contradicts x+ ϕ being consistent.

(⇐). Let us consider the contrapositive: if x+ϕ is inconsistent, then ¬ϕ ∈ x.
Since x + ϕ is inconsistent, there is some ψ such that ψ ∧ ¬ψ ∈ x + ϕ. Since
ψ ∧ ¬ψ → ¬ϕ is a propositional tautology and x + ϕ is closed under R0, it
holds that ¬ϕ ∈ x + ϕ. From the latter it follows that ϕ → ¬ϕ ∈ x. Finally,
(ϕ→ ¬ϕ)→ ¬ϕ ∈ x, and hence ¬ϕ ∈ x.

The following proposition is a variation of the Lindenbaum Lemma. In order
to prove it, we rely heavily on rules of inference R3 and R4.

Lemma 29 (Lindenbaum). Every consistent theory x can be extended to a
maximal consistent theory y.

Proof. Let ψ0, ψ1, . . . be an enumeration of formulas of the language, and let
y0 = x. Suppose that for some n ≥ 0, yn is a consistent theory, and x ⊆ yn. If
yn +ψn is consistent (i.e. if ¬ψn 6∈ yn by Proposition 28), then yn+1 = yn +ψn.
Otherwise, if ψn is not a conclusion of either R3 or R4, yn+1 = yn.
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If ψn is a conclusion of R3, that is if ψn is of the form η([G,χ]ϕ), then
yn+1 = yn + ¬η(χ ∧ [ψG ∧ χ]ϕ), where ¬η(χ ∧ [ψG ∧ χ]ϕ) is the first formula
in the enumeration such that η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn. Theory yn+1 is consistent
due to the fact that if ¬η([G,χ]ϕ) ∈ yn, then there must exist some ψG such
that η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn, for otherwise R3 would lead to η([G,χ]ϕ) ∈ yn,
which contradicts the assumption that ¬η([G,χ]ϕ) ∈ yn and consistency of yn.
We pick the first formula ¬η(χ ∧ [ψG ∧ χ]ϕ) in the enumeration, and have that
¬η(χ ∧ [ψG ∧ χ]ϕ) ∈ yn+1 and η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn+1. Note that adding such
a witness ψG corresponds to the semantics of relativised group announcements,
i.e. for formula η{〈G,χ〉¬ϕ} we have ψG such that η{χ→ 〈ψG ∧ χ〉¬ϕ}.

If ψn is a conclusion of R4, that is if ψn is of the form η([〈G〉]ϕ), then
yn+1 = yn + ¬η(〈A \ G,ψG〉ϕ), where ¬η(〈A \ G,ψG〉ϕ) is the first formula in
the enumeration such that η(〈A \ G,ψG〉ϕ) 6∈ yn. Theory yn+1 is consistent
due to the fact that if ¬η([〈G〉]ϕ) ∈ yn, then there must exist some ψG such
that η(〈A \ G,ψG〉ϕ) 6∈ yn, for otherwise R4 would lead to η([〈G〉]ϕ) ∈ yn,
which contradicts the assumption that ¬η([〈G〉]ϕ) ∈ yn and consistency of yn.
We pick the first formula ¬η(〈A \G,ψG〉ϕ) in the enumeration, and have that
¬η(〈A \ G,ψG〉ϕ) ∈ yn+1 and η(〈A \ G,ψG〉ϕ) 6∈ yn+1. Note that since for all
χA\G: η([A \ G,ψG]ϕ) → η(ψG ∧ [ψG ∧ χA\G]ϕ) are theorems, they and their
contrapositions (due to Lemma 25) are already in yn (because CoRGAL ⊆ x ⊆
yn). Thus, adding ¬η(〈A\G,ψG〉ϕ) to yn adds all the ¬η(ψG → 〈ψG∧χA\G〉ϕ)
for χA\G as well. This satisfies the semantics of coalition announcements, i.e.
for formula η{〈[G]〉¬ϕ} we have some ψG such that for all χA\G: η{ψG ∧ [ψG ∧
χA\G]¬ϕ}.

Next we need to show that y =
⋃∞
n=0 yn is a maximal consistent theory.

First, observe that each yn is a consistent theory. Theory y0 is consistent because
x is consistent. And yn+1 is consistent by its construction and the consistency
of yn: either yn+1 = yn+ψn is consistent, or, otherwise, if ψn is not a conclusion
of the infinitary rules, then yn+1 = yn and hence yn+1 is consistent, or if ψn
is a conclusion of the infinitary rules, then yn+1 is consistent by the argument
presented in the above two paragraphs. Next, we argue that y is consistent,
i.e. that there is no ψ such that ψ ∧ ¬ψ ∈ y. Suppose towards a contradiction
that ψ ∧ ¬ψ ∈ y. This means that there is n, such that ψ ∧ ¬ψ ∈ yn, which
contradicts yn being a consistent theory.

Now we argue that y is a theory, i.e. CoRGAL ⊂ y (1), and y is closed under
R0 (2), R3 (3), and R4 (4).

1. Since x ⊆ y, we have that CoRGAL ⊆ x ⊂ y.

2. Assume that ψ → ϕ ∈ y, and ψ ∈ y. This means that there is n such
that ψ → ϕ,ψ ∈ yn. The latter implies that ϕ ∈ yn, and thus ϕ ∈ y.
Therefore, y is closed under R0.

3. Let some ψn be η([G,χ]ϕ). By the construction of yn+1, if ¬η([G,χ]ϕ) 6∈
yn (or, equivalently, if yn + η([G,χ]ϕ) is consistent), then η([G,χ]ϕ) ∈
yn+1, where yn+1 = yn + η([G,χ]ϕ), and hence η([G,χ]ϕ) ∈ y. Since
CoRGAL ⊂ y and y is closed under R0, this means that η(χ ∧ [ψG ∧
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χ]ϕ) ∈ y for all ψG. If ¬η([G,χ]ϕ) ∈ yn, then there is ψG such that
¬η(χ ∧ [ψG ∧ χ]ϕ) ∈ yn+1, and hence ¬η(χ ∧ [ψG ∧ χ]ϕ) ∈ y. By the
consistency of y and Proposition 28, we have that η(χ ∧ [ψG ∧ χ]ϕ) 6∈ y,
and therefore y is closed under R3.

4. Let some ψn be η([〈G〉]ϕ). By the construction of yn+1, if ¬η([〈G〉]ϕ) 6∈ yn
(or, equivalently, if yn + η([〈G〉]ϕ) is consistent), then η([〈G〉]ϕ) ∈ yn+1,
where yn+1 = yn+η([〈G〉]ϕ), and hence η([〈G〉]ϕ) ∈ y. Since CoRGAL ⊂ y
and y is closed under R0, this means that η(〈A \G,ψG〉ϕ) ∈ y for all ψG.
If ¬η([〈G〉]ϕ) ∈ yn, then there is ψG such that ¬η(〈A \ G,ψG〉ϕ) ∈ yn+1,
and hence ¬η(〈A \G,ψG〉ϕ) ∈ y. By the consistency of y and Proposition
28, we have that η(〈A \G,ψG〉ϕ) 6∈ y, and therefore y is closed under R4.

Finally, we show that y is maximal. For any formula ψn in the enumeration, we
have that either ¬ψn 6∈ yn, and thus ψn ∈ yn+1 ⊆ y, or we have that ¬ψn ∈ yn
and hence ¬ψn ∈ y. Therefore, for any ψn we have that either ψn ∈ y or
¬ψn ∈ y.

4.5 Completeness II: Extended Truth Lemma

In the rest of the section we prove Truth Lemma for the extended canonical
model, and argue that the model is normal. This allows us to show the com-
pleteness of CoRGAL with respect to the classic semantics using Theorem 24.

Definition 17 (Extended Canonical Model). The extended canonical model

MC is a tuple (SC ,∼C , V C , { ψ−→| ψ ∈ LCoRGAL}), where set SC = {x |
x is a maximal consistent theory}, x ∼Ca y if and only if Kax ⊆ y, V C(p) =

{x | p ∈ x}, and x
ψ−→ y if and only if for all ϕ: ϕ ∈ y implies 〈ψ〉ϕ ∈ x. We

denote the standard canonical model (SC ,∼C , V C) by MC .

Lemma 30. Let x and y be maximal consistent theories, x
ψ−→ y if and only if

for all ϕ: [ψ]ϕ ∈ x implies ϕ ∈ y.

Proof. (⇒). Let x
ψ−→ y and [ψ]ϕ ∈ x for an arbitrary ϕ. Since x is a maximal

consistent theory, we have that ¬[ψ]ϕ 6∈ x, which is equivalent to 〈ψ〉¬ϕ 6∈ x.
According to the definition of the extended canonical model, this implies that
¬ϕ 6∈ y. Since y is a maximal consistent theory, ϕ ∈ y.

(⇐). Let ∀ϕ: [ψ]ϕ ∈ x implies ϕ ∈ y. If ϕ ∈ y, then ¬ϕ 6∈ y. This implies
that [ψ]¬ϕ 6∈ x. By the maximality of x, we have that ¬[ψ]¬ϕ ∈ x, which

is equivalent to 〈ψ〉ϕ ∈ x. We yield x
ψ−→ y by the definition of the extended

canonical model.

Proposition 31 (Extended Truth Lemma). For all ϕ ∈ LCoRGAL and all
maximal consistent theories x, MC

x |= ϕ if and only if ϕ ∈ x.

Proof. The proof is by induction on the size of ϕ.
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Base case. MC
x |= p is equivalent to p ∈ x by the definition of the extended

canonical model.
Induction hypothesis. For all ϕ <Size[,],[〈〉] ψ and all maximal consistent theories

x, MC
x |= ϕ if and only if ϕ ∈ x.

Case ¬ϕ. Let MC
x |= ¬ϕ. By the semantics this is equivalent to MC

x 6|= ϕ.
By Lemma 22 and the induction hypothesis, MC

x 6|= ϕ if and only if ϕ 6∈ x.
Since x is a maximal consistent theory, ϕ 6∈ x if and only if ¬ϕ ∈ x.

Case ϕ ∧ χ. Let MC
x |= ϕ ∧ χ. By the semantics this is equivalent to

MC
x |= ϕ andMC

x |= χ. By Lemma 22 and the induction hypothesis,MC
x |= ϕ

and MC
x |= χ if and only if ϕ ∈ x and χ ∈ x. Since x is a maximal consistent

theory, it contains ϕ ∧ χ→ ϕ, ϕ ∧ χ→ χ, and ϕ→ (χ→ ϕ ∧ χ), and is closed
under R0. Thus ϕ ∈ x and χ ∈ x if and only if ϕ ∧ χ ∈ x.

Case Kaϕ. (⇒) Let MC
x |= Kaϕ. By the semantics this is equivalent to

the fact that for all y: x ∼Ca y implies My |= ϕ. According to the definition of
the extended canonical model, and by the induction hypothesis and Lemma 22,
this is equivalent to ∀y ∈ SC : Kax ⊆ y implies ϕ ∈ y. We need to show that
Kaϕ ∈ x. Suppose towards a contradiction that Kaϕ 6∈ x. This means that
Kax + ¬ϕ is a consistent theory. By Lindenbaum Lemma it can be expanded
to a maximal consistent theory z such that z ∈ SC , Kax ⊆ z and ¬ϕ ∈ z. A
contradiction.

(⇐). Let Kaϕ ∈ x, and let x ∼Ca y for some y. This means that ϕ ∈ y by the
definition of the extended canonical model. By Lemma 22 and the induction
hypothesis, this is equivalent to MC

y |= ϕ. Since y was arbitrary, the latter

holds for all y such that x ∼Ca y, which is equivalent to MC
x |= Kaϕ by the

semantics.
Case [ψ]ϕ. (⇒). Assume that MC

x |= [ψ]ϕ. By the semantics this means

that for all y ∈ SC : x
ψ−→ y impliesMC

y |= ϕ. Let for some arbitrary y it be the

case that x
ψ−→ y. Hence,MC

y |= ϕ, which is equivalent to ϕ ∈ y by the induction
hypothesis and Lemma 22. By the definition of the extended canonical model,

x
ψ−→ y is equivalent to the fact that for all ϕ: if ϕ ∈ y, then 〈ψ〉ϕ ∈ x. Thus, we

have that 〈ψ〉ϕ ∈ x, which implies [ψ]ϕ ∈ x due to the fact that x is a theory.

(⇐). Let [ψ]ϕ ∈ x, and let x
ψ−→ y for some y. This means that [ψ]ϕ ∈ x

implies ϕ ∈ y by Lemma 30. Thus, we have that ϕ ∈ y. By the induction
hypothesis and Lemma 22, this is equivalent toMC

y |= ϕ. Since y was arbitrary,

the latter holds for all y such that x
ψ−→ y, which is equivalent to MC

x |= [ψ]ϕ
by the semantics.

Case [G,ψ]ϕ. Let [G,ψ]ϕ ∈ x. Since x is a theory and thus closed under
R3, we have that [G,ψ]ϕ ∈ x if and only if for all ψG: ψ ∧ [ψG ∧ ψ]ϕ ∈ x.
By the induction hypothesis and Lemma 22, the latter is equivalent to MC

x |=
ψ∧[ψG∧ψ]ϕ for all ψG, and this is equivalent toMC

x |= [G,ψ]ϕ by the semantics.
Case [〈G〉]ϕ. Let [〈G〉]ϕ ∈ x. Since x is a theory and thus closed under R4, we

have that [〈G〉]ϕ ∈ x if and only if for all ψG: 〈A\G,ψG〉ϕ ∈ x. By the induction
hypothesis and Lemma 22, the latter is equivalent to MC

x |= 〈A \ G,ψG〉ϕ for
all ψG, and this is equivalent to MC

x |= [〈G〉]ϕ by the semantics.
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The next step in the proof is to show that the extended canonical model is
normal, i.e. that it possesses properties of U-Functionality, U-Invariance, U-Zig,
and U-Zag. But before that, we need one additional lemma.

Lemma 32. ¬ψ → [ψ]ϕ is a theorem of CoRGAL.

Proof. Consider the left-to-right direction of A7: 〈ψ〉¬ϕ → ψ ∧ [ψ]¬ϕ. By
propositional reasoning, the latter implies 〈ψ〉¬ϕ→ ψ, and this is equivalent to
¬ψ → [ψ]ϕ.

In the following, Lemmas 33–38 are similar to the corresponding lemmas of
Wang and Cao [2013]. The difference is that we use maximal consistent theories,
in contrast to maximal consistent sets therein.

Lemma 33 (U-Invariance). For all x ∈ SC : if x
ψ−→ y, then for all p ∈ P : p ∈ x

if and only if p ∈ y.

Proof. Assume that x
ψ−→ y. If p ∈ x, then by A6 and R0 we have [ψ]p ∈ x.

From Lemma 30 we have that p ∈ y. For the other direction, assume that p ∈ y.
By the definition of the extended canonical model, we have that 〈ψ〉p ∈ x. The
latter implies that p ∈ x by the contraposition of A6.

Lemma 34. Every state in MC has at most one ψ-successor.

Proof. Suppose that some x has two ψ-successors y and z. Since y and z are two
different maximal consistent theories, then there is some ϕ such that ϕ ∈ y and
¬ϕ ∈ z. According to the definition of the extended canonical model, we have
that 〈ψ〉ϕ ∈ x and 〈ψ〉¬ϕ ∈ x, which implies that [ψ]ϕ ∈ x and [ψ]¬ϕ ∈ x. Since

x
ψ−→ z and by Lemma 30, we have that ϕ ∈ z and ¬ϕ ∈ z, which contradicts z

being a maximal consistent theory.

Lemma 35. For all ψ ∈ LCoRGAL and x ∈ SC , if ψ ∈ x, then there is a unique

y such that x
ψ−→ y and y = {ϕ | 〈ψ〉ϕ ∈ x} = {ϕ | [ψ]ϕ ∈ x}. If ψ 6∈ x, then x

does not have ψ-successors.

Proof. Let ψ ∈ x. We need to show that y is a maximal consistent theory. First,
note that as y = {ϕ | [ψ]ϕ ∈ x} = [ψ]x, it is a theory by Lemma 26. Assume
towards a contradiction that y is inconsistent. This means that p,¬p ∈ y. By
the construction of y, this means that [ψ]p, [ψ]¬p ∈ x. Taking into account that
ψ ∈ x, we have that 〈ψ〉p and 〈ψ〉¬p are both in x by A7. By the contraposition
A6 we have that p ∈ x and ¬p ∈ x, which contradicts x being a maximal
consistent theory.

For maximality, suppose towards a contradiction that ϕ,¬ϕ 6∈ y. By the
construction of y, this means that [ψ]ϕ, [ψ]¬ϕ 6∈ x. Since x is maximal, ¬[ψ]ϕ ∈
x. Also, from [ψ]¬ϕ 6∈ x we have that ¬[ψ]¬ϕ ∈ x, which is equivalent to
〈ψ〉ϕ ∈ x. By A7 the latter implies [ψ]ϕ ∈ x, and together with ¬[ψ]ϕ ∈ x, this
contradicts to x being a maximal consistent theory.
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From the fact that ψ ∈ x, it follows that {ϕ | 〈ψ〉ϕ ∈ x} = {ϕ | [ψ]ϕ ∈ x}.
By the construction of y and the definition of the extended canonical model, it

follows that x
ψ−→ y. Moreover, by Lemma 34 y is the unique ψ-successor of x.

Let ψ 6∈ x. Assume towards a contradiction that there is a maximal con-

sistent theory y such that x
ψ−→ y. Since x is a maximal consistent theory, we

have that ¬ψ ∈ x. By Lemma 32, ¬ψ → [ψ](p∧¬p) ∈ x. From [ψ](p∧¬p) ∈ x,

x
ψ−→ y, and Lemma 30, we conclude that p ∧ ¬p ∈ y, which contradicts to y

being a maximal consistent theory.

Lemma 36 (U-Functionality). For any ψ ∈ LCoRGAL, if MC
x |= ψ, then there

is a unique y ∈ SC such that x
ψ−→ y. If MC

x 6|= ψ, then there are no outgoing
ψ-arrows at x.

Proof. Suppose that for an arbitrary ψ we have that MC
x |= ψ. By Extended

Truth Lemma this is equivalent to ϕ ∈ x, and by Lemma 35 x has a unique
ψ-successor y.

If MC
x 6|= ψ, then, by Extended Truth Lemma, ψ 6∈ x, and by Lemma 35 x

does not have ψ-successors.

Lemma 37 (U-Zig). For all x, x′, y, y′ ∈ SC , if x
ψ−→ y, x ∼Ca x′, and x′

ψ−→ y′,
then y ∼Ca y′.

Proof. Let x ∼Ca x′, x
ψ−→ y, and x′

ψ−→ y′. Assume that for an arbitrary ϕ

it holds that Kaϕ ∈ y. We need to show that ϕ ∈ y′. From x
ψ−→ y and the

definition of the extended canonical model, we conclude that 〈ψ〉Kaϕ ∈ x. By
A8 we also have that Ka[ψ]ϕ ∈ x. From x ∼Ca x′ and the definition of the
extended canonical model, it follows that [ψ]ϕ ∈ x′. Finally, by Lemma 30 and

x′
ψ−→ y′, we have that ϕ ∈ y′.

Lemma 38 (U-Zag). Let x, y, y′ ∈ SC . If x
ψ−→ y and y ∼Ca y′, then there exists

an x′ such that x ∼Ca x′ and x′
ψ−→ y′.

Proof. Let x
ψ−→ y and y ∼Ca y′. We need to show that there exists an x′ such

that x ∼Ca x′ and x′
ψ−→ y′. Let z be the closure of the set {〈ψ〉ϕ | ϕ ∈ y′}∪ {ϕ |

Kaϕ ∈ x} under R0, R3, and R4.
Obviously, z is a theory. We need to show that z is consistent.
Assume towards a contradiction that z is inconsistent. As R0, R3, and R4

are truth-preserving, this means that there are 〈ψ〉ϕ1, . . . , 〈ψ〉ϕn ∈ {〈ψ〉ϕ | ϕ ∈
y′} and φ1, . . . , φm ∈ {ϕ | Kaϕ ∈ x} such that 〈ψ〉ϕ1∧ . . .∧〈ψ〉ϕn∧φ1∧ . . .∧φm
is inconsistent, i.e. ` 〈ψ〉ϕ1 ∧ . . . ∧ 〈ψ〉ϕn ∧ φ1 ∧ . . . ∧ φm → χ ∧ ¬χ. By the
propositional reasoning we have that φ1 ∧ . . .∧ φm → ¬(〈ψ〉ϕ1 ∧ . . .∧ 〈ψ〉ϕn) ∈
CoRGAL, and hence Ka(φ1∧. . .∧φm)→ Ka(¬(〈ψ〉ϕ1∧. . .∧〈ψ〉ϕn)) ∈ CoRGAL
by R1, A1, and R0. Since x is a theory, Ka(φ1∧ . . .∧φm)→ Ka(¬(〈ψ〉ϕ1∧ . . .∧
〈ψ〉ϕn)) ∈ x. From the fact that Kaϕ∧Kaψ ↔ Ka(ϕ∧ψ) is a theorem of EL, it
follows that Ka(φ1 ∧ . . .∧φm) ∈ x. Hence, Ka(¬(〈ψ〉ϕ1 ∧ . . .∧ 〈ψ〉ϕn)) ∈ x. By
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Lemma 21, this is equivalent to Ka(¬〈ψ〉(ϕ1 ∧ . . . ∧ ϕn)) ∈ x and Ka[ψ]¬(ϕ1 ∧
. . .∧ϕn) ∈ x. By A9 we have that [ψ]Ka¬(ϕ1 ∧ . . .∧ϕn) ∈ x. From x

ψ−→ y and
Lemma 30, we can infer that Ka¬(ϕ1 ∧ . . . ∧ ϕn) ∈ y. Since y ∼Ca y′, we also
have that ¬(ϕ1 ∧ . . . ∧ ϕn) ∈ y′, which contradicts ϕ1, . . . , ϕn ∈ y′.

Since z is a consistent theory, it can be extended to a maximal consistent

theory x′ by the Lindenbaum Lemma, and x ∼Ca x′ and x′
ψ−→ y′ by the con-

struction of z.

From Lemmas 33, 36, 37, and 38 it follows that the extended canonical model
is normal.

Proposition 39. MC is normal.

Finally, we prove the completeness of CoRGAL.

Theorem 40 (Completeness w.r.t. classic semantics). For all ϕ ∈ LCoRGAL, if
ϕ is valid , then ϕ ∈ CoRGAL.

Proof. Suppose towards a contradiction that ϕ is valid, and ϕ 6∈ CoRGAL.
Since CoRGAL is a consistent theory, from Lemma 26 and Proposition 28 it
follows that CoRGAL+¬ϕ is a consistent theory. By the Lindenbaum Lemma,
there is a maximal consistent theory x such that CoRGAL + ¬ϕ ⊆ x. By
Lemma 26, ¬ϕ ∈ CoRGAL + ¬ϕ, and hence ϕ 6∈ x. From Extended Truth
Lemma we can infer that MC

x 6|= ϕ, and from Proposition 39 and Theorem 24
it follows that MC

x 6|= ϕ, which contradicts ϕ being a validity w.r.t. to classic
semantics.

5 Conclusion

We presented CoRGAL, the logic of coalition announcements with added rela-
tivised group announcements. The new operators allowed us to tackle the double
quantification in coalition announcement operators. The completeness of CoR-
GAL was shown using an alternative technique where public announcements are
static transitions rather than dynamic updates. Let us note that CoRGAL and
its completeness proof can be straightforwardly modified to yield a complete
axiomatisation of relativised group announcement logic without coalition an-
nouncements. We also considered various (in)validities of GAL and CAL some
of which were mentioned as open problems in the literature. We hope that this
sheds more light on coalition announcements and how they are related to group
announcements.

Arguably the most intriguing open problem in the area is a complete and
sound axiomatisation of CAL. Another interesting question is whether there
exist finitary axiomatisations of APAL, GAL, CAL, and CoRGAL. The negative
answer has been given to a somewhat related arbitrary arrow update logic with
common knowledge (AAULC) [Kuijer, 2017]. Another related result has been
presented in [van Ditmarsch and French, 2017], where the authors considered a
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restriction of APAL to arbitrary announcements of boolean formulas only. The
resulting logic, boolean arbitrary public announcement logic, has a complete
finitary axiomatisation. The positive answer was also obtained for APAL with
Memory (APALM) [Baltag et al., 2018], where epistemic models are extended
with the memory of the initial configuration, and special operators of APALM
can access it.

A host of open research questions deal with extending the logics of quan-
tified announcements with group knowledge modalities. These modalities in-
clude common knowledge [Vanderschraaf and Sillari, 2014], distributed knowl-
edge [Wáng and Ågotnes, 2013], relativised common knowledge [van Benthem
et al., 2006], and resolution [Ågotnes and Wáng, 2017]. GAL with distributed
knowledge was studied in [Galimullin et al., 2019]. To the best of our knowledge,
the closest work that touches upon the problem of expanding a logic of quan-
tified epistemic actions with common knowledge is [Kuijer, 2017]. However, an
axiomatisation of AAULC is an open problem.

Finally, relativised group announcements are interesting in their own right.
They are used to show an expressivity result in [French et al., 2019], and further
exploration of their possible use is an exciting avenue of future research.
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Appendix A: Coalition Annoucement Logic Sub-
sumes Coalition Logic

It is known [Ågotnes and van Ditmarsch, 2008] that CAL subsumes CL, i.e.
all axioms of CL are valid in CAL, and rules of inference of CL are validity
preserving in CAL. However, to the best of our knowledge, a formal proof has
not yet been presented.

Proposition 41. All of the following are valid and validity preserving in CAL.

(C0) all instantiations of propositional tautologies,
(C1) ¬〈[G]〉⊥,
(C2) 〈[G]〉>,
(C3) ¬〈[∅]〉¬ϕ→ 〈[A]〉ϕ,
(C4) 〈[G]〉(ϕ1 ∧ ϕ2)→ 〈[G]〉ϕ1,
(C5) 〈[G]〉ϕ1 ∧ 〈[H]〉ϕ2 → 〈[G ∪H]〉(ϕ1 ∧ ϕ2), if G ∩H = ∅,
(R0) ` ϕ,ϕ→ ψ ⇒` ψ,
(R1) ` ϕ↔ ψ ⇒` 〈[G]〉ϕ↔ 〈[G]〉ψ.

Proof. C0 and R0 are obvious.
C1: It holds that |= >, and > is true in every restriction of a model, i.e.

|= [ψ]>. In particular, for some model Ms and all true formulas ψG and χA\G:
Ms |= 〈ψG∧χA\G〉>. We can relax the requirement of ψG being true by adding
the formula as an antecedent. Formally, for all (true and false) ψG and some
(true) χA\G: Ms |= ψG → 〈ψG ∧ χA\G〉>. The latter is Ms |= [〈G〉]> by the
semantics, and this is equivalent to Ms |= ¬〈[G]〉⊥ by the duality of the coalition
announcement operators.

C2: For any pointed model Ms and any announcement ψG ∧ χA\G it holds
that Ms |= [ψG ∧ χA\G]>. The latter implies that for some true ψG and for all
χA\G: Ms |= ψG ∧ [ψG ∧ χA\G]>, which is Ms |= 〈[G]〉> by the semantics.
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C3: Let ¬〈[∅]〉¬ϕ be true in some arbitrary pointed model Ms. This is
equivalent to ∃ψA: Ms |= ¬[ψA]¬ϕ, which is Ms |= 〈[A]〉ϕ by the semantics.

C4: Suppose that for some Ms, Ms |= 〈[G]〉(ϕ1∧ϕ2) holds. By the semantics,
∃ψG,∀χA\G: Ms |= ψG ∧ [ψG ∧ χA\G](ϕ1 ∧ ϕ2). Then, by the axiom of PAL
[ψ](ϕ ∧ χ) ↔ [ψ]ϕ ∧ [ψ]χ, we have ∃ψG,∀χA\G: Ms |= ψG ∧ [ψG ∧ χA\G]ϕ1 ∧
[ψG ∧ χA\G]ϕ2. The latter implies ∃ψG,∀χA\G: Ms |= ψG ∧ [ψG ∧ χA\G]ϕ1,
which is Ms |= 〈[G]〉ϕ1 by the semantics.

C5: Assume that for some Ms we have that Ms |= 〈[G]〉ϕ1 ∧ 〈[H]〉ϕ2. Let
us consider the first conjunct Ms |= 〈[G]〉ϕ1. By the semantics it is equiva-
lent to ∃ψG,∀χA\G: Ms |= ψG ∧ [ψG ∧ χA\G]ϕ1. Since G ∩ H = ∅, we can
split χA\G into χH and χA\G∪H . Thus we have that ∃ψG,∀χH ,∀χA\(G∪H):
Ms |= ψG ∧ [ψG ∧ χH ∧ χA\(G∪H)]ϕ1. The same holds for the second conjunct:
∃ψH ,∀χG,∀χA\(G∪H): Ms |= ψH ∧ [ψH ∧ χG ∧ χA\(G∪H)]ϕ2. Since χH (χG)
quantifies over all formulas known to H (G), we can substitute χH (χG) with
ψH (ψG). Hence we have

∃ψG,∃ψH ,∀χA\(G∪H) :

Ms |= ψG ∧ ψH ∧ [ψG ∧ ψH ∧ χA\(G∪H)]ϕ1 ∧ [ψG ∧ ψH ∧ χA\G∪H ]ϕ2.

By the axiom of PAL [ψ](ϕ ∧ χ)↔ [ψ]ϕ ∧ [ψ]χ, we have that

∃ψG,∃ψH ,∀χA\(G∪H) : Ms |= ψG ∧ ψH ∧ [ψG ∧ ψH ∧ χA\(G∪H)](ϕ1 ∧ ϕ2),

and the latter is equivalent to Ms |= 〈[G ∪H]〉(ϕ1 ∧ ϕ2) by the semantics.
R1: Assume that |= ϕ↔ ψ. This means that for any pointed model Ms the

following holds: Ms |= ϕ if and only if Ms |= ψ (1). Now suppose that for some
pointed model Nt it holds that Nt |= 〈[G]〉ϕ. By the semantics, ∃ψG,∀χA\G:
Nt |= ψG ∧ [ψG ∧ χA\G]ϕ, which is equivalent to the following: Nt |= ψG and

(Nt |= ψG ∧ χA\G implies N
ψG∧χA\G
t |= ϕ). By (1) we have that ∃ψG,∀χA\G:

Nt |= ψG and (Nt |= ψG ∧ χA\G implies N
ψG∧χA\G
t |= ψ), which is Nt |= 〈[G]〉ψ

by the semantics. Since Nt was arbitrary, we have that |= 〈[G]〉ϕ→ 〈[G]〉ψ. The
same argument holds in the other direction.

Appendix B: Proofs from Section 4

Proposition 17. R3 and R4 are truth-preserving.

Proof. (R3) Base case. If for all ψG we have that Ms |= χ ∧ [ψG ∧ χ]ϕ, then
this is equivalent to Ms |= [G,χ]ϕ by the semantics.

Induction Hypothesis. If for some Ms it holds that Ms |= η(χ ∧ [ψG ∧ χ]ϕ)
for all ψG, then Ms |= η([G,χ]ϕ).

Case ∀ψG: τ → η(χ ∧ [ψG ∧ χ]ϕ) for some τ ∈ LCoRGAL. This means that
Ms |= ¬τ or Ms |= η(χ∧ [ψG ∧ χ]ϕ). By the induction hypothesis we have that
Ms |= ¬τ or Ms |= η([G,χ]ϕ), which is equivalent to Ms |= τ → η([G,χ]ϕ).

Case ∀ψG: Kaη(χ ∧ [ψG ∧ χ]ϕ) for some a ∈ A. By semantics we have
that for every t ∈ S: s ∼a t implies Mt |= η(χ ∧ [ψG ∧ χ]ϕ). By the induction
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hypothesis we conclude that for every t ∈ S: s ∼a t implies Mt |= η([G,χ]ϕ),
which is equivalent to Ms |= Kaη([G,χ]ϕ).

Case ∀ψG: [τ ]η(χ∧[ψG∧χ]ϕ) for some τ ∈ LCoRGAL. This means thatMs |=
τ implies Mτ

s |= η(χ ∧ [ψG ∧ χ]ϕ). By the induction hypothesis we have that
Ms |= τ implies Mτ

s |= η([G,χ]ϕ), which is equivalent to Ms |= [τ ]η([G,χ]ϕ).
(R4) Base case. If for all ψG we have that Ms |= 〈A \G,ψG〉ϕ, then this is

equivalent to Ms |= [〈G〉]ϕ by the semantics.
Induction Hypothesis. If for some Ms it holds that Ms |= η(〈A \ G,ψG〉ϕ)

for all ψG, then Ms |= η([〈G〉]ϕ).
Case ∀ψG: τ → η(〈A \ G,ψG〉ϕ) for some τ ∈ LCoRGAL. This means that

Ms |= ¬τ or Ms |= η(〈A \G,ψG〉ϕ). By the induction hypothesis we have that
Ms |= ¬τ or Ms |= η([〈G〉]ϕ), which is equivalent to Ms |= τ → η([〈G〉]ϕ).

Case ∀ψG: Kaη(〈A \G,ψG〉ϕ) for some a ∈ A. By semantics we have that
for every t ∈ S: s ∼a t implies Mt |= η(〈A \ G,ψG〉ϕ). By the induction
hypothesis we conclude that for every t ∈ S: s ∼a t implies Mt |= η([〈G〉]ϕ),
which is equivalent to Ms |= Kaη([〈G〉]ϕ).

Case ∀ψG: [τ ]η(〈A \ G,ψG〉ϕ) for some τ ∈ LCoRGAL. This means that
Ms |= τ implies Mτ

s |= η(〈A \ G,ψG〉ϕ). By the induction hypothesis we have
that Ms |= τ implies Mτ

s |= η([〈G〉]ϕ), which is equivalent to Ms |= [τ ]η([〈G〉]ϕ).

Lemma 22. Let ϕ,ψ, χ ∈ LCoRGAL. The following inequalities hold.

1. ϕ <Size[,],[〈〉] ¬ϕ,

2. ϕ <Size[,],[〈〉] ϕ ∧ χ,

3. ϕ <Size[,],[〈〉] Kaϕ,

4. ϕ <Size[,],[〈〉] [ψ]ϕ and ψ <Size[,],[〈〉] [ψ]ϕ,

5. χ ∧ [ψG ∧ χ]ϕ <Size[,],[〈〉] [G,χ]ϕ,

6. 〈A \G,ψG〉ϕ <Size[,],[〈〉] [〈G〉]ϕ.

Proof. The proof is straightforward. We just show cases 5 and 6.
5. Note that [〈〉]-depth for both sides of the inequality is the same and equals

d[〈〉](χ) + d[〈〉](ϕ). In particular, we have the following for the left-hand side:
d[〈〉](χ ∧ [ψG ∧ χ]ϕ) = max{d[〈〉](χ), d[〈〉]([ψG ∧ χ]ϕ)} = d[〈〉]([ψG ∧ χ]ϕ) = d[〈〉](ψG ∧
χ) + d[〈〉](ϕ) = max{d[〈〉](ψG), d[〈〉](χ)} + d[〈〉](ϕ) = d[〈〉](χ) + d[〈〉](ϕ). For the right-
hand side we have that d[〈〉]([G,χ]ϕ) = d[〈〉](χ) + d[〈〉](ϕ).

Since [〈〉]-depths are the same, we calculate [, ]-depths. For the left-hand side
we have that d[,](χ ∧ [ψG ∧ χ]ϕ) = d[,](χ) + d[,](ϕ). In particular, d[,](χ ∧ [ψG ∧
χ]ϕ) = max{d[,](χ), d[,]([ψG ∧χ]ϕ)} = d[,]([ψG ∧χ]ϕ) = d[,](ψG ∧χ) + d[,](ϕ) =
max{d[,](ψG), d[,](χ)}+ d[,](ϕ) = d[,](χ) + d[,](ϕ). Depth of the right-hand side
formula is d[,]([G,χ]ϕ) = 1+d[,](ϕ)+d[,](χ). Hence, χ∧ [ψG∧χ]ϕ <Size[,],[〈〉] [G,χ]ϕ.

6. On the left-hand side we have that d[〈〉](〈A\G,ψG〉ϕ) = d[〈〉](ϕ), and on the
right-hand side the depth is d[〈〉][〈G〉]ϕ = d[〈〉](ϕ) + 1. Hence, 〈A \G,ψG〉ϕ <Size[,],[〈〉]
[〈G〉]ϕ.

Lemma 25. Let ϕ,ψ ∈ LCoRGAL. If ϕ→ ψ is a theorem, then η(ϕ)→ η(ψ) is
a theorem as well.
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Proof. Assume that ϕ→ ψ is a theorem. We prove the lemma by induction on
η.

Base case η := ]. Formula ϕ→ ψ is a theorem by assumption.
Induction Hypothesis. Assume that for some η, η(ϕ)→ η(ψ) is a theorem.
Case (τ → η(ϕ)) → (τ → η(ψ)) for some τ ∈ LCoRGAL. Formula (η(ϕ) →

η(ψ)) → ((τ → η(ϕ)) → (τ → η(ψ))) is a propositional tautology, and, hence,
a theorem of CoRGAL. Using the induction hypothesis and R0, we have that
(τ → η(ϕ))→ (τ → η(ψ)) is a theorem.

Case Kaη(ϕ) → Kaη(ψ) for some a ∈ A. Since η(ϕ) → η(ψ) is a theorem
by the induction hypothesis, Ka(η(ϕ) → η(ψ)) is also a theorem by R1. Next,
Ka(η(ϕ) → η(ψ)) → (Kaη(ϕ) → Kaη(ψ)) is an instance of A1, and, hence, a
theorem. Finally, using R0 we have that Kaη(ϕ)→ Kaη(ψ) is a theorem.

Case [τ ]η(ϕ) → [τ ]η(ψ) for some τ ∈ LCoRGAL. Since η(ϕ) → η(ψ) is a
theorem by the induction hypothesis, [τ ](η(ϕ) → η(ψ)) is also a theorem by
R2. Formula [τ ](η(ϕ) → η(ψ)) → ([τ ]η(ϕ) → [τ ]η(ψ)) is implied by axiom
schema A5. Using R0 we can conclude that [τ ]η(ϕ) → [τ ]η(ψ) is a theorem of
CoRGAL.

Lemma 26. Let x be a theory, ϕ,ψ ∈ LCoRGAL, and a ∈ A. The following are
theories: x + ϕ = {ψ | ϕ → ψ ∈ x},Kax = {ϕ | Kaϕ ∈ x}, and [ϕ]x = {ψ |
[ϕ]ψ ∈ x}.

Proof. Let ψ be a theorem, i.e. ψ ∈ CoRGAL. Then ϕ→ ψ is also a theorem,
since ψ → (ϕ → ψ) ∈ CoRGAL and CoRGAL is closed under R0. Moreover,
Kaψ and [ϕ]ψ are theorems as well due to the fact that CoRGAL is closed
under R1 and R2. Therefore, ψ ∈ x + ϕ, ψ ∈ Kax, and ψ ∈ [ϕ]x, and hence
CoRGAL ⊆ x+ ϕ,Kax, [ϕ]x.

The rest of the proof is an extension of the one from [Balbiani et al., 2008],
where it was shown that x + ϕ, Kax, and [ϕ]x are closed under R0. We argue
that corresponding sets are closed under R3 and R4.

Case x+ϕ. Suppose that η(χ∧ [ψG ∧χ]τ) ∈ x+ϕ for some given χ, for all
ψG, and for some τ ∈ LCoRGAL. This means that ϕ→ η(χ∧ [ψG ∧χ]τ) ∈ x for
all ψG. Since ϕ → η(χ ∧ [ψG ∧ χ]τ) is a necessity form, and x is closed under
R3 (by Definition 16), we infer that ϕ → η([G,χ]τ) ∈ x, and, consequently,
η([G,χ]τ) ∈ x+ ϕ. So, x+ ϕ is closed under R3.

Now, let ∀ψG: η(〈A \ G,ψG〉τ) ∈ x + ϕ. By the definition of x + ϕ this
means that ϕ→ η(〈A \G,ψG〉τ) ∈ x for all ψG. Since ϕ→ η(〈A \G,ψG〉τ is a
necessity form and x is closed under R4, we infer that ϕ → η([〈G〉]τ) ∈ x, and,
consequently, η([〈G〉]τ) ∈ x+ ϕ. So, x+ ϕ is closed under R4.

Case Kax. Suppose that η(χ ∧ [ψG ∧ χ]τ) ∈ Kax for some given χ, for all
ψG, and for some τ ∈ LCoRGAL. This means that Kaη(χ∧ [ψG∧χ]τ) ∈ x for all
ψG. Since Kaη(χ∧ [ψG ∧χ]τ) is a necessity form, and x is closed under R3 (by
Definition 16), we infer that Kaη([G,χ]τ) ∈ x, and, consequently, η([G,χ]τ) ∈
Kax. So, Kax is closed under R3.

Now, let ∀ψG: η(〈A \G,ψG〉τ) ∈ Kax. By the definition of Kax this means
that Kaη(〈A \ G,ψG〉τ) ∈ x for all ψG. Since Kaη(〈A \ G,ψG〉τ is a necessity
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form and x is closed under R4, we infer that Kaη([〈G〉]τ) ∈ x, and, consequently,
η([〈G〉]τ) ∈ Kax. So, Kax is closed under R4.

Case [ϕ]x. Finally, suppose that η(χ ∧ [ψG ∧ χ]τ) ∈ [ϕ]x for some given χ,
for all ψG, and for some τ ∈ LCoRGAL. This means that [ϕ]η(χ ∧ [ψG ∧ χ]τ) ∈
x for all ψG. Since [ϕ]η(χ ∧ [ψG ∧ χ]τ) is a necessity form, and x is closed
under R3 (by Definition 16), we infer that [ϕ]η([G,χ]τ) ∈ x, and, consequently,
η([G,χ]τ) ∈ [ϕ]x. So, [ϕ]x is closed under R3.

Now, let ∀ψG: η(〈A \G,ψG〉τ) ∈ [ϕ]x. By the definition of [ϕ]x this means
that [ϕ]η(〈A \ G,ψG〉τ) ∈ x for all ψG. Since [ϕ]η(〈A \ G,ψG〉τ is a necessity
form and x is closed under R4, we infer that [ϕ]η([〈G〉]τ) ∈ x, and, consequently,
η([〈G〉]τ) ∈ [ϕ]x. So, [ϕ]x is closed under R4.
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