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Abstract

Public announcement logic (PAL) is an extension of epistemic logic with dynamic
operators that model the effects of all agents simultaneously and publicly acquiring
the same piece of information. One of the extensions of PAL, group announce-
ment logic (GAL), allows quantification over (possibly joint) announcements made
by agents. In GAL, it is possible to reason about what groups can achieve by making
such announcements. It seems intuitive that this notion of coalitional ability should
be closely related to the notion of distributed knowledge, the implicit knowledge of
a group. Thus, we study the extension of GAL with distributed knowledge, and
in particular possible interaction properties between GAL operators and distributed
knowledge. The perhaps surprising result is that, in fact, there are no interaction
properties, contrary to intuition. We make this claim precise by providing a sound
and complete axiomatisation of GAL with distributed knowledge. We also consider
several natural variants of GAL with distributed knowledge, as well as some other
related logic, and compare their expressive power.

1 Introduction

There has recently been considerable interest in epistemic logics with quantifiers over
information-changing actions. See, for example, formal systems proposed in [3, 7, 25,
10, 14], and a recent survey [11]. Arguably the most studied formalisms of this kind are
extensions of public announcement logic (PAL) [29] with quantification over announce-
ments. The notable extensions are arbitrary public announcement logic (APAL) [7], group
announcement logic (GAL) [2], and coalition announcement logic (CAL) [3].

∗This is an extended version of the LORI paper [21]. Compared to the latter, we consider two new
ways of extending GAL with distributed knowledge, and expand Sections 3, 4, and 6. Sections 5 and 7
are entirely new.
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APAL extends PAL with a modality that quantifies over all possible (truthful) an-
nouncements. In GAL, there are modalities for each group of agents G, and these modal-
ities quantify over all possible joint announcements the group can make. Modalities of
CAL are similar to those of GAL with the additional property that the agents outside of
group G also make a simultaneous announcement. Thus GAL and CAL can be seen as
logics of coalitional ability [28] in terms of epistemic consequences of publicly observable
joint actions.

Distributed knowledge [16] is a standard notion of group knowledge that captures the
total, combined, knowledge in a group. While there has been a renewed interest in the
dynamics of distributed knowledge [32, 1, 5], extensions of logics of quantifed actions with
distributed knowledge have not been studied in detail. In this paper we investigate some
extensions of the latter type, with the focus on the interaction of group announcements
and distributed knowledge.

In addition to filling the obvious gap in the literature, the main motivation for study-
ing these two modalities is their apparent connectedness: distributed knowledge is often
understood as a state of knowledge agents in a group have the ability to bring about if
they share their individual knowledge [16]. Careful analysis of this intuition [26, 30, 5]
shows that this strong relationship does not always hold. This fact only begs the question
of what exactly the relationship between the two types of modalities is, particularly in the
form of interaction axioms.

We start out by considering several intuitively plausible candidates for such interaction
axioms, and show that none of them are actually valid. Then we show that in fact, contrary
to intuition, there are no (non-trivial) interaction axioms at all : the axiom system obtained
by the independent combination of axioms for epistemic logic with distributed knowledge
and GAL is complete.

From the semantical perspective, adding distributed knowledge to GAL (and some
other logics of quantified announcements) is not straightforward, since it allows for three
meaningful extensions. The first extension, which we denote as GALDpa-D, is the most
conservative one. Note that in GAL, under the standard assumption, there is a public
announcement operator for each formula in the language. In GALDpa-D we do not add
any new public announcement operators. Syntactically, this means that formulas with
distributed knowledge do not occur inside public announcement operators.

The next two extensions deal with the domain of quantification of group announce-
ments. One of them, GALD, keeps the semantics of group announcement operators as in
GAL, i.e. they quantify over the purely epistemic language1. Compared to GALDpa-D,
in GALD we have more public announcement operators since formulas with distributed
knowledge are allowed to occur inside of them.

Finally, in the third extension, GALDga+D, we change the semantics of group announce-
ments to allow agents to announce formulas with distributed knowledge2. In order to get

1The quantification range of group announcements does not include formulas with group announcements
to avoid circularity. We also exclude public announcements for simplicity, since they do not add expressivity
to epistemic logic [29].

2The point made above regarding public announcements still hold: epistemic logic with distributed
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GALDga+D, we substitute classic group announcements in GALD with this new type of
operators.

One of the reasons to consider the three variants is to understand the significance
of distributed knowledge in the context of public communication. As it turns out, the
relationship between the variants is quite surprising, as their relative expressive power is
not strictly increasing. For example, the very conservative fragment GALDpa-D can capture
some properties of models that cannot be captured by the seemingly more expressive
GALDga+D. On the other hand, sound and complete axiomatisations of each of these three
variants are quite similar.

Having dealt with group announcements and distributed knowledge, we also briefly
consider two other logical variants. First, instead of the classic distributed knowledge,
which falls short of capturing the intuition of ‘pooling knowledge together’, we discuss
extending GAL with resolved distributed knowledge [5] that is a better approximation of
the intuition. Second, we consider extending CAL, which is quite different from GAL in
many aspects, with distributed knowledge, and propose some preliminary results. These
results indicate that, at least expressivity-wise, there are some parallels between GAL and
CAL.

The paper is organised as follows. In the next section we set the stage by defining
the syntax and semantics of GAL with distributed knowledge, including the variants men-
tioned above, as well as some other background information and preliminary results. In
Section 3 we look at some potential interaction axioms relating group announcements and
group knowledge. In Section 4 we present a Hilbert-style axiomatic system for group an-
nouncement logic with distributed knowledge, and show that it is sound and complete. In
Section 5 we investigate the relative expressive power of GALDpa-D, GALD, and GALDga+D.
Operators for resolving distributed knowledge are discussed in Section 6, and CAL with
distributed knowledge is considered in Section 7. We conclude in Section 8.

2 Syntax and Semantics

In this section, we introduce the main logical languages and semantics we consider in the
paper, together with some additional basic tools.

2.1 Languages

All languages in the paper are defined relative to a finite set of agents A and a countable set
of propositional variables P . The distinctions between the following languages correspond
partly to the subtle distinctions in semantics discussed in the introduction and will be
clearer shortly.

Definition 1 (Languages). Languages LEL of epistemic logic, LPAL of public announce-
ment logic, LGAL of group announcement logic, and extensions thereof with distributed

knowledge and public announcements is equally expressive as the one without public announcements [32].
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knowledge, are recursively defined by the following grammars:

LEL ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

LELD ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | DGϕ

LPAL ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ

LPALD ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | DGϕ | [ϕ]ϕ

LGAL ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [G]ϕ

LGALDga+D ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | DGϕ | [ϕ]ϕ | [G]Mϕ

LGALD ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | DGϕ | [ϕ]ϕ | [G]ϕ

LGALDpa-D ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | DGϕ | [ψ]ϕ | [G]ϕ

where p ∈ P , ψ ∈ LGAL, a ∈ A, G ⊆ A, and all the usual abbreviations of propositional
logic (e.g. ϕ∨ψ, ϕ→ ψ, and ϕ↔ ψ) and conventions for deleting parentheses hold. Duals

are defined as K̂aϕ := ¬Ka¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, 〈G〉ϕ := ¬[G]¬ϕ, and 〈G〉Mϕ := ¬[G]M¬ϕ.

The intuitive meaning of formulas is as follows: Kaϕ means that agent a knows that
ϕ; DGϕ means that G has distributed knowledge of ϕ (ϕ is true in the set of states that
all agents in G consider possible); [ϕ]ψ means that if ϕ is true, then after it is announced
(and everyone’s knowledge updated by removing states not satisfying ϕ), ψ is true; [G]ϕ
and [G]Mϕ mean that after any joint announcement by agents in G of formulas they know,
ϕ is true.

The quantification in the latter modalities are intended to be over conjunctions of
formulas of LEL for [G] and LELD for [G]M. The different scope of quantification is the
reason we distinguish syntactically between the group modality [G]M of LGALDga+D and [G]
of LGALD. The meaning of [G] is the same in LGALDpa-D as in LGALD, but note that in
the former distributed knowledge formulas are not allowed inside public announcement
operators. As discussed in the introduction, the distinction is relevant because LGALDpa-D

has exactly the same set of public announcement modalities as LGAL.

2.2 Models and Bisimulation

Definition 2 (Epistemic Model). An epistemic model M is a triple (S,∼, V ), where S is
a non-empty set of states, ∼: A→ 2S×S assigns to each agent an equivalence relation, and
V : P → 2S is a valuation. For a group G ⊆ A, ∼G denotes

⋂
a∈G ∼a. If necessary, we

refer to the elements of the tuple as SM , ∼M , and V M . A model M with a designated
state s ∈ S is called a pointed model and denoted by Ms.

Model M is called finite if S is finite. Also, we write M ⊆ N if SM ⊆ SN , ∼M and V M

are results of restricting ∼N and V N to SM , and call M a submodel of N .
Let Ms = (S,∼, V ), and X ⊆ S such that X 6= ∅. An updated model MX

s is (SX , ∼X ,
V X), where s ∈ X, SX = X, ∼Xa =∼a ∩ (X ×X) for all a ∈ A, and V X(p) = V (p) ∩X.

Definition 3 (Collective Bisimulation). Let M = (SM ,∼M , V M) and N = (SN , ∼N ,
V N) be two models. A non-empty binary relation Z ⊆ SM × SN is called a collective
bisimulation if and only if for all s ∈ SM and u ∈ SN with (s, u) ∈ Z:
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• for all p ∈ P , s ∈ V M(p) if and only if u ∈ V N(p);

• for all G ⊆ A and all t ∈ SM : if s ∼MG t, then there is a v ∈ SN such that u ∼NG v
and (t, v) ∈ Z;

• for all G ⊆ A and all v ∈ SN : if u ∼NG v, then there is a t ∈ SM such that s ∼MG t
and (t, v) ∈ Z.

The notion of an individual bisimulation (or just bisimulation) is defined in exactly
the same way as a collective bisimulation, except that the two last conditions are only
required to hold for singleton groups G. Thus, a collective bisimulation is also an individual
bisimulation, but not necessarily the other way around

If there is a bisimulation between models M and N linking states s and u, we say
that Ms and Nu are bisimilar, and write Ms � Nu. For collective bisimulation we write
Ms �C Nu, and say that Ms and Nu are collectively bisimilar.

If a (collective) bisimulation between Ms and Nu is over P \ {p} for some p ∈ P , we
say that Ms and Nu are (collectively) bisimilar except for p.

Definition 4 (Bisimulation contraction). Let M = (S,∼, V ) be an epistemic model. The
bisimulation contraction of M is the model ‖M‖ = (‖S‖, ‖∼‖, ‖V ‖), where ‖S‖ = {[s] |
s ∈ S} and [s] = {t ∈ S | Ms � Mt}, [s]‖∼‖a[t] if and only if ∃s′ ∈ [s], ∃t′ ∈ [t] such that
s′ ∼a t′ in M , and [s] ∈ ‖V ‖(p) if and only if ∃s′ ∈ [s] such that s′ ∈ V (p).

Intuitively, the bisimulation contraction is the most compact representation of a model.
It is a known result that Ms � ‖M‖[s] [24].

2.3 Semantics

Let LGEL = {
∧
i∈GKiψi | ψi ∈ LEL} with typical elements ψG be the set of formulas describ-

ing individual knowledge of members of group G. Similarly, we fix LGELD = {
∧
i∈GKiψi |

ψi ∈ LELD}.

Definition 5 (Semantics). Let M = (S,∼, V ), s ∈ S, and Ms be a pointed epistemic
model. The semantics is defined recursively as follows :

Ms |= p iff s ∈ V (p)
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= Kaϕ iff Mt |= ϕ for all t ∈ S such that s ∼a t
Ms |= DGϕ iff Mt |= ϕ for all t ∈ S such that s ∼G t
Ms |= [ψ]ϕ iff Ms |= ψ implies MX

s |= ϕ, where X = {t ∈ S |Mt |= ψ}
Ms |= [G]ϕ iff Ms |= [ψG]ϕ for all ψG ∈ LGEL
Ms |= [G]Mϕ iff Ms |= [ψG]ϕ for all ψG ∈ LGELD
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Whenever X = {t ∈ S | Mt |= ψ}, we will write Mψ
s for MX

s . Observe that in
order to avoid circularity, the quantification in the definition of the semantics of both
group announcement operators [G]ϕ and [G]Mϕ is restricted to formulas without group
announcement operators.

Formula ϕ is valid if and only if for any pointed model Ms it holds that Ms |= ϕ.

For convenience, let us also provide the semantics for the diamond versions of the
announcement operators.

Ms |= 〈ψ〉ϕ iff Ms |= ψ and MX
s |= ϕ, where X = {t ∈ S |Mt |= ψ}

Ms |= 〈G〉ϕ iff Ms |= 〈ψG〉ϕ for some ψG ∈ LGEL
Ms |= 〈G〉Mϕ iff Ms |= 〈ψG〉ϕ for some ψG ∈ LGELD

We will use GALD to refer to the logic with language LGALD and semantics as given
above, and so on for the other logical languages we consider.

The next proposition states that collective bisimulation implies modal equivalence.

Proposition 1. Let ϕ ∈ (LGALD ∪ LGALDga+D ∪ LGALDpa-D), and Ms and Nt be epistemic
models. If Ms �C Nt, then Ms |= ϕ if and only if Nt |= ϕ.

Proof. By a straightforward induction following the corresponding proof for LELD from
[30].

2.4 The Positive Fragment

Positive formulas can be considered as a particularly well behaved fragment of public
announcement logic [15]. In particular, they remain true after an announcement.

Definition 6 (Positive Fragments). Positive fragments of languages of group announce-
ment logic with distributed knowledge are defined as follows:

L+
GALDga+D ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ | DGϕ | [¬ϕ]ϕ | [G]Mϕ

L+
GALD ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ | DGϕ | [¬ϕ]ϕ | [G]ϕ

L+
GALDpa-D ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ | DGϕ | [¬ψ]ϕ | [G]ϕ

where p ∈ P , ψ ∈ L+
GAL, a ∈ A, and G ⊆ A. We will abbreviate L+

GALD ∪ L
+
GALDpa-D ∪

L+
GALDga+D as L+.

Definition 7 (Preservation). A formula ϕ is preserved under submodels if and only if
Ms |= ϕ implies Ns |= ϕ for any pointed models Ms and Ns such that Ns ⊆Ms.

In the following proposition we show that formulas of any of the positive fragments
remain true under submodels. Particularly, this means that if a positive formula is true in
a model, then no matter what agents announce, the formula will remain true (see more on
positive formulas in the context of quantified announcements in [12]).
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Proposition 2. Formulas of L+ are preserved under submodels.

Proof. Let M = (SM ,∼M , V M) and N = (SN ,∼N , V N) be models such that s ∈ SM ,
s ∈ SN , and Ns ⊆ Ms. Boolean cases, case Kaϕ, and case [¬ψ]ϕ are proved in [15,
Proposition 8]. We show the remaining two cases DGϕ and [G]ϕ.

Induction hypothesis. If Ms |= ϕ, then Ns |= ϕ.
Case DGϕ. Let Ms |= DGϕ. By the definition of semantics, this is equivalent to the

fact that Mt |= ϕ for all t ∈ SM such that s ∼G t. The latter implies Mt |= ϕ for every
t ∈ SN such that s ∼G t. By the induction hypothesis, we have that Nt |= ϕ for all t ∈ SN
such that s ∼G t, which is equivalent to Ns |= DGϕ by the semantics.

Case [G]ϕ. Assume towards a contradiction that Ms |= [G]ϕ and Ns 6|= [G]ϕ. By the
duality of group announcements, this is equivalent to Ns |= 〈G〉¬ϕ, and by the definition
of semantics, the latter is equivalent to Ns |= 〈ψG〉¬ϕ for some ψG ∈ LELD, which, in turn,
equals to Ns |= ψG and NψG

s 6|= ϕ. Now observe that NψG
s ⊆ Ns ⊆Ms. From that and the

contraposition of the induction hypothesis, it follows that Ms 6|= ϕ. However, Ms |= [G]ϕ
implies that Ms |= [

∧
i∈GKi(p ∨ ¬p)]ϕ. It is immediate that Ms |= [

∧
i∈GKi(p ∨ ¬p)]ϕ is

equivalent to Ms |= ϕ, which contradicts Ms 6|= ϕ.
Case [G]Mϕ. Similar to [G]ϕ.

3 Ability, announcements, and group knowledge

Distributed knowledge is often described as potential individual (or even common) knowl-
edge that members of a group can establish ‘through communication’ or by ‘pooling their
knowledge together’. However, this intuition is in fact not correct [5]. For example, a
group can have distributed knowledge of a formula of the form p∧¬Kap (sometimes called
a Moore sentence [27]), which can never become individual knowledge in a group that
contains agent a [5]. Nevertheless, that doesn’t mean that there are no interaction proper-
ties between group announcements and group knowledge. We consider some candidates in
this section. Note that all the properties mentioned below hold in GALD, GALDpa-D and
GALDga+D, with 〈G〉Mϕ substituted for 〈G〉ϕ, with the exception of Proposition 3.

It is known that the following potential axioms are not valid [2]:

• 〈G〉ϕ→ DG〈G〉ϕ

• DG〈G〉ϕ→ 〈G〉DGϕ

It is also known that the following are valid:

• 〈G〉DGϕ → DG〈G〉ϕ (implied by Proposition 28 of [2] and the fact that knowledge
de re implies knowledge de dicto)

• DG〈G〉ϕ→ 〈G〉ϕ (distributed knowledge is veridical)

Consider weaker properties which involve ‘everybody knows’ operator EG, where EGϕ :=∧
i∈GKiϕ. These properties encapsulate the intuition that distributed knowledge can be

made explicit through public communication. It is known that the following is not valid:
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• DGϕ→ 〈G〉EGϕ (take ϕ := p ∧ ¬Kap where a ∈ G [5])

The other direction also does not hold:

Fact 1. 〈G〉EGϕ→ DGϕ is not valid.

Proof. Let ϕ := Kbp ∨Kb¬p and ψ{a,b} := Ka(p→ Kbp), and consider Figure 1.

s tu
ab

s t
a

Figure 1: Models M (left) and Mψ{a,b} (right). Propositional variable p is true in black
states.

We have Ms |= 〈ψ{a,b}〉E{a,b}ϕ, which is equivalent to Ms |= ψ{a,b} and M
ψ{a,b}
s |=

E{a,b}ϕ. On the other hand, it is easy to verify that Ms 6|= D{a,b}ϕ as the only ∼{a,b}-
accessible state is s itself, and Ms 6|= ϕ.

In general, distributed knowledge of a group cannot be made known to members of
the group via public communication. This is contrary to the intuition that distributed
knowledge is a kind of knowledge that members can attain through public communication.
Thus it is interesting to know what are the requirements on formulas and models so that
this intuition would be true. We argue that positive formulas can be made known on
bisimulation contracted models (this restriction is not surprising given analysis in [26]).

Fact 2. DGϕ→ 〈G〉EGϕ with ϕ ∈ L+ is valid on finite bisimulation contracted models.

Proof. Let Ms |= DGϕ for an arbitrary finite bisimulation contracted Ms. Since distributed
knowledge is veridical, the latter implies Ms |= ϕ. Now let us a consider the maximally in-
formative announcement by agents from G. Since Ms is finite and bisimulation contracted,
each state in the model can be uniquely described by a characteristic formula. Moreover,
disjunctions of these formulas correspond to sets of states. Agents from G can announce
characteristic formulas that describe their equivalence classes and include s, i.e.

⋂
i∈G[s]i

for all i ∈ G (see [4, 22] for details). In the resulting model MψG
s , relation ∼G on set of

states SψG is universal. Moreover, since Ms |= DGϕ and ϕ is preserved under submodels,
we have that MψG

s |= EGϕ, and, consequently, Ms |= 〈G〉EGϕ.

The restriction to finite bisimulation contracted models is essential in the previous
proposition.

Fact 3. DGϕ→ 〈G〉EGϕ with ϕ ∈ L+ is not valid.

Proof. Consider the model in Figure 2. It is easy to check that Ms |= D{a,b}p. In order
to see that Ms 6|= 〈{a, b}〉E{a,b}p, observe that Ms � Mv and Mt � Mu. Thus, any
announcement by a that preserves {s, t} also preserves {u, v}. The same holds for agent b
and {s, u} and {t, v}.
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t

u

sv a

ba

b

Figure 2: Model M . Propositional
variable p is true in black states.

Finally, we consider the relation between [G]ϕ
and [G]Mϕ. Recall that [G] is the standard group
announcement operator, where announcements by
agents belong to a fragment of epistemic logic with-
out distributed knowledge. On the other hand, in
[G]M agents’ announcements may include distributed
knowledge. In Proposition 3 we show that if agents
in group G cannot avoid ϕ by any announcement
involving distributed knowledge, then they cannot
avoid ϕ by announcing purely epistemic formulas.
Also, we show that the other direction of this conditional is not valid, i.e. allowing agents
to make announcements with distributed knowledge increases their ability to force certain
submodels of a model.

Proposition 3. Consider a unified language L = LGALD ∪ LGALDga+D . We have that
[G]Mϕ→ [G]ϕ is valid and [G]ϕ→ [G]Mϕ is not valid.

Proof. Validity of [G]Mϕ→ [G]ϕ follows from the fact that LEL ⊆ LELD.
To show that [G]ϕ→ [G]Mϕ is not valid we present a counterexample in Figure 3.

s
ab

d

d

a

ba

b
d

Figure 3: Model M . Propositional variable p is true in black states.

Also, consider two submodels of M depicted in Figure 4.

s
ab

d

d

d
s

d

d

d

Figure 4: Submodels, N (left) and O (right), of model M .

Let ϕ := ¬p ∧ K̂d(Ka¬p ∧Kb¬p) ∧ K̂aKdp ∧ K̂bKdp, and consider formula [{d}]¬ϕ ∈
LGALD. Observe that Ns |= ϕ, Ms 6|= ϕ, and Os 6|= ϕ.

In model M all black states are bisimilar to each other, and thus d does not have an an-
nouncement such that it would remove some of the black states and leave the other. Thus,
the only possible submodels of Ms that d can enforce are Os and Ms itself, which implies

that Ms |= [{d}]¬ϕ. On the other hand, Ms |= 〈{d}〉Mϕ; in particular, M
Kd¬D{a,b}p
s |= ϕ

since Kd¬D{a,b}p holds in every state but two rightmost black ones, yielding Ns.
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4 Proof System

In this section, we first provide an axiomatic system for GALD, and then prove that it is
sound and complete. The system and the proof are then easily adapted to GALDpa-D and
GALDga+D. The completeness proof is based on adaptions of definitions, results and proof
techniques from [8, 32].

4.1 Axiomatisation of group announcement logic with distributed
knowledge

Similarly to the axiomatisation of GAL, the system we provide here is infinitary (it contains
rules with infinitely many premises), and it is defined using necessity forms [23].

Definition 8. Necessity forms are defined by the following grammar:

η(]) ::= ] | ϕ→ η(]) | Kaη(]) | DGη(]) | [ϕ]η(])

where ϕ ∈ LGALD. The result of substituting ϕ for ] in η is denoted by η(ϕ).

Observe that ] has a unique occurrence in η(]).

Definition 9. The axiomatisation of GALD comprises axiom systems for EL [16], PAL
[13], GAL [2], and PALD [32].
(A0) Propositional tautologies (A11) [ϕ]p↔ (ϕ→ p)
(A1) Ka(ϕ→ ψ) ∧Kaϕ→ Kaψ (A12) [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)
(A2) Kaϕ→ ϕ (A13) [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
(A3) Kaϕ→ KaKaϕ (A14) [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)
(A4) ¬Kaϕ→ Ka¬Kaϕ (A15) [ϕ]DGψ ↔ (ϕ→ DG[ϕ]ψ)
(A5) DG(ϕ→ ψ) ∧DGϕ→ DGψ (A16) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ
(A6) DGϕ→ ϕ (A17) [G]ϕ→ [ψG]ϕ, where ψG ∈ LGEL
(A7) DGϕ→ DGDGϕ (R0) From ϕ→ ψ and ϕ, infer ψ
(A8) ¬DGϕ→ DG¬DGϕ (R1) From ϕ, infer Kaϕ
(A9) D{a}ϕ↔ Kaϕ (R2) From ϕ, infer [ψ]ϕ
(A10) DGϕ→ DHϕ, if G ⊆ H (R3) From {η([ψG]ϕ) | ψG ∈ LGEL}, infer ` η([G]ϕ)

We denote by GALD the smallest set that contains all instances of A0–A17 and is
closed under R0–R3. Elements of GALD are called theorems.

Lemma 1. Rule R3 is truth-preserving.

Proof. The proof is by induction on the construction of η. Let Ms be a pointed epistemic
model. We show only the case DHη(]), and other cases are similar.

Case DHη(]). Let Ms |= DHη([ψG]ϕ) for all ψG ∈ LGEL. By the semantics this means
that for every ψG, Mt |= η([ψG]ϕ) for all t such that s ∼H t. Pick any t such that s ∼H t.
By the induction hypothesis we have Mt |= η([G]ϕ). Since t was arbitrary, Mt |= η([G]ϕ)
for all t such that s ∼H t. The latter is equivalent to Ms |= DHη([G]ϕ).

Theorem 1. The axiomatisation of GALD is sound.

Proof. Follows from the soundness of PALD [32], GAL [2], and Lemma 1.
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4.2 Completeness

Following the technique from [32, 33], we prove the completeness of GALD by making a
detour through pre- and pseudo models, where distributed knowledge operators are treated
as classic knowledge modalities.

Definition 10 (Pre- and pseudo models). An epistemic pre-model is a tuple M = (S,
∼, V ), where ∼ maps every agent a and every subset G ⊆ A to an element of 2S×S. A
pre-model is called a pseudo model (and is written M) if for all a it holds that ∼{a}=∼a,
and for all G,H ⊆ A: if G ⊆ H, then ∼H⊆∼G.

Next, we define theories that will be used for the construction of the canonical model.

Definition 11 (Theories). A set x of formulas of LGALD is called a theory, if it contains all
theorems and is closed under R0 and R3. A theory is consistent if for all ϕ, ϕ ∧ ¬ϕ 6∈ x.
A theory is called maximal if for all ϕ, either ϕ ∈ x or ¬ϕ ∈ x. GALD is the smallest
theory, and LGALD is the largest theory.

Theories are not required to be closed under R1 and R2 since these rules of inference,
unlike R0 and R3, preserve only validity and not truth.

Lemma 2. Let x be a theory, and ϕ, ψ ∈ LGALD. The following are theories: x+ϕ = {ψ |
ϕ→ ψ ∈ x}, Kax = {ϕ | Kaϕ ∈ x}, DGx = {ϕ | DGϕ ∈ x}, and [ϕ]x = {ψ | [ϕ]ψ ∈ x}.

Proof. Cases for x+ϕ, Kax, [ϕ]x are proved in [7, Lemma 4.11]. Here we argue that DGx
is a theory.

We need to show that DGx contains GALD and is closed under R0 and R3. Let
ϕ ∈ GALD. Then we also have that DGϕ ∈ GALD by the necessitation of DG, which is
derivable in PALD [32]. Since x is a theory, and hence GALD ⊆ x, we have that DGϕ ∈ x,
and ϕ ∈ DGx. This establishes that GALD ⊆ DGx.

Assume that ϕ → ψ, ϕ ∈ DGx. By A5 and R0 this implies that DGψ ∈ x, or,
equivalently, ψ ∈ DGx.

Suppose that η([ψH ]ϕ) ∈ DGx for all ψH ∈ LHEL. This means that DGη([ψH ]ϕ) ∈ x
for all ψH , and from the fact that DGη(]) is a necessity form, we conclude by R3 that
DGη([H]ϕ) ∈ x. Finally, by the definition of DGx we yield η([H]ϕ) ∈ DGx.

Lemma 3. For all consistent theories x, ¬ϕ 6∈ x if and only if x+ ϕ is consistent.

Lemma 4 (Theorem 2.5.2 of [23]). Every consistent theory can be extended to a maximal
consistent theory.

Definition 12 (Canonical pseudo model). The canonical pseudo model is the tuple MC =
(SC ,∼C , V C), where SC = {x | x is maximal consistent theory}, x ∼Ca y if and only if
Kax ⊆ y, x ∼CG y if and only if for all H ⊆ G it holds that DHx ⊆ y , and V C(p) = {x ∈
SC | p ∈ x}.
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For the rest of the section, we employ the following strategy. First, we prove the truth
lemma for the canonical pseudo model. Next, we unravel MC into the tree-like pre-model
MC , which satisfies the same GALD formulas as MC . After that, we fold MC into the
model MC . Folding is a truth-preserving operation, and hence we will be able to conclude
the completeness of GALD.

Definition 13 (Size Relation). The | · |-size and d-depth of ϕ ∈ LGALD are defined as
follows:
|p| = 1 d(p) = 0
|¬ϕ| = |Kaϕ| = |DGϕ| = d(¬ϕ) = d(Kaϕ) = d(DGϕ) = d(ϕ)

= |[G]ϕ| = |ϕ|+ 1 d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}
|ϕ ∧ ψ| = max{|ϕ|, |ψ|}+ 1 d([ψ]ϕ) = d(ψ) + d(ϕ)
|[ψ]ϕ| = |ψ|+ 3 · |ϕ| d([G]ϕ) = d(ϕ) + 1

The binary relation <
|·|
d between ϕ, ψ ∈ LGALD is defined as follows:

ϕ <
|·|
d ψ iff d(ϕ) < d(ψ), or d(ϕ) = d(ψ) and |ϕ| < |ψ|. The relation is a well-founded

strict partial order between formulas. Note that for all ψ ∈ LPALD we have that d(ψ) = 0.

Lemma 5. Let ϕ, χ ∈ LGALD.

1. ϕ <
|·|
d ¬ϕ,

2. ϕ <
|·|
d ϕ ∧ ψ,

3. ϕ <
|·|
d Kaϕ,

4. ϕ <
|·|
d DGϕ,

5. (ϕ→ p) <
|·|
d [ϕ]p,

6. (ϕ→ ¬[ϕ]ψ) <
|·|
d [ϕ]¬ψ,

7. ([ϕ]ψ ∧ [ϕ]χ) <
|·|
d [ϕ](ψ ∧ χ),

8. [ϕ ∧ [ϕ]χ]ψ <
|·|
d [ϕ][χ]ψ,

9. (ϕ→ Ka[ϕ]ψ) <
|·|
d [ϕ]Kaψ,

10. (ϕ→ DG[ϕ]ψ) <
|·|
d [ϕ]DGψ,

11. [ψG]ϕ <
|·|
d [G]ϕ,

12. [χ][ψG]ϕ <
|·|
d [χ][G]ϕ.

Lemma 6. Let x be a theory. If DGϕ 6∈ x, then there is a maximal consistent theory y
such that DGx ⊆ y and ϕ 6∈ y.

Proof. Assume that DGϕ 6∈ x. This means that ϕ 6∈ DGx, and hence DGx + ¬ϕ is a
consistent theory by Lemma 3. By Lemma 4, DGx + ¬ϕ can be extended to a maximal
consistent theory y. Since ¬ϕ ∈ y, by consistency we have that ϕ 6∈ y.

Lemma 7. Let x be a theory. If Kaϕ 6∈ x, then there is a maximal consistent theory y
such that Kax ⊆ y and ϕ 6∈ y.

Proof. Similar to the proof of Lemma 6.

In the following, we use satisfaction with respect to pre- and pseudo models. The
definition of pre- and pseudo semantics is exactly like the definition of normal semantics,
where group relations ∼G are treated as primitive relations. We will use the same symbol,
|=, for all three versions of satisfaction, since it is clear which one is employed from the
font used for models (M , M, or M).
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Lemma 8. For all formulas ϕ and maximal consistent theories x it holds that MC
x |= ϕ if

and only if ϕ ∈ x.

Proof. The proof is by induction on the size of ϕ. Boolean cases are straightforward, and
cases with public announcements are dealt with using A11–A16. Here we show only cases
with distributed knowledge and group announcements.

Case DGϕ. (⇒): Let MC
x |= DGϕ. By the semantics we have that for all y ∈ SC :

x ∼CG y implies MC
y |= ϕ. By the definition of the canonical pseudo model, axiom A10,

Lemma 5, and the induction hypothesis, the latter is equivalent to the fact that for all
y ∈ SC and all H ⊆ G: DHx ⊆ y implies ϕ ∈ y. In particular, for all y ∈ SC : DGx ⊆ y
implies ϕ ∈ y. By the contraposition of Lemma 6 this implies that DGϕ ∈ x.

(⇐): Assume that DGϕ ∈ x and x ∼CG y for some maximal consistent theory y. By
A7 and R0 it holds that DGDGϕ ∈ x. By the definition of the canonical model, we have
that DGϕ ∈ y. Since y is a maximal consistent theory and thus contains DGϕ → ϕ, it
holds that ϕ ∈ y. Next, by the induction hypothesis we have that MC

y |= ϕ. Since y was
arbitrary, we have that MC

y |= ϕ for all y such that x ∼CG y. The latter is equivalent to
MC

x |= DGϕ by the semantics.
Case [ϕ]DGψ. MC

x |= [ϕ]DGψ if and only if MC
x |= ϕ → DG[ϕ]ψ by the validity of

A15. By Lemma 5 and the induction hypothesis, MC
x |= ϕ → DG[ϕ]ψ if and only if

ϕ→ DG[ϕ]ψ ∈ x if and only if [ϕ]DGψ ∈ x by A15.
Case [ϕ][G]ψ. (⇒): Let MC

x |= [ϕ][G]ψ. By the semantics, MC
x |= [ϕ][ψG]ψ for all ψG.

By Lemma 5 and the induction hypothesis, [ϕ][ψG]ψ ∈ x for all ψG. Note that [ϕ](]) is a
necessity form, hence, by R3, we have that [ϕ][G]ψ ∈ x.

(⇐): Let [ϕ][G]ψ ∈ x. The distributivity rule for public announcements is derivable in
PAL [13, Proposition 4.46]. Hence, by A17 and R0 it holds that [ϕ][ψG]ψ ∈ x. By Lemma
5 and the induction hypothesis we have that MC

x |= [ϕ][ψG]ψ for all ψG. By the semantics,
MC

x |= ϕ implies (MC
x )ϕ |= [ψG]ψ, for every ψG. The latter is equivalent to the fact that

MC
x |= ϕ implies (MC

x )ϕ |= [G]ψ, and thus MC
x |= [ϕ][G]ψ.

Case [G]ϕ. (⇒): Let MC
x |= [G]ϕ. By the semantics, this is equivalent to MC

x |= [ψG]ϕ
for all ψG. By Lemma 5 and the induction hypothesis, for every ψG we have that [ψG]ϕ ∈ x,
and by R3, [G]ϕ ∈ x.

(⇐): Let [G]ϕ ∈ x. By the validity of A17, [ψG]ϕ ∈ x for all ψG. By Lemma 5 and
the induction hypothesis, MC

x |= [ψG]ϕ for every ψG, which is equivalent to MC
x |= [G]ϕ

by the semantics.

For the rest of the proof, we closely follow [32]. Since most of the remaining part involves
transformation of the canonical model, group announcement operators do not play a role
here. Hence, we just present main points of the transformation, and particular details can
be found in the cited literature.

The canonical pseudo model MC can be unravelled into the treelike canonical pre-model
MC . Such an operation preserves collective bisimulation.

Definition 14 (Folding). LetM = (S,∼, V ) be a pre-model. The folding ofM is the tuple
(S,∼∗, V ), where for all a ∈ A, ∼∗a is the transitive closure of ∼∪a=∼a ∪

⋃
{∼G| a ∈ G}.
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Folding of an unravelled tree-like pre-model yields an epistemic model.

Definition 15 (Trans-bisimulation). Let M = (SM ,∼M , V M) be a model and N = (SN ,
∼N , V N ) be a pre-model. A non-empty binary relation Z ⊆ SM × SN is called a trans-
bisimulation if and only if for all s ∈ SM and u ∈ SN with (s, u) ∈ Z:

• for all p ∈ P , s ∈ V M(p) if and only if u ∈ V N (p);

• for all a ∈ A and all t ∈ SM : if s ∼Ma t or s ∼M{a} t, then there is a v ∈ SN such that

u ∼ν0 . . . ∼νn v, where νi is either a or G such that a ∈ G, and (t, v) ∈ Z;

• for all G ⊆ A such that |G| > 2 and all t ∈ SM : if s ∼MG t, then there is a v ∈ SN
such that u ∼H . . . ∼I v with G ⊆ H ∩ . . . ∩ I, and (t, v) ∈ Z;

• for all ν among a and G and all v ∈ SN : if u ∼Nν v, then there is a t ∈ SM such that
s ∼Mν t, and (t, v) ∈ Z.

If there is a trans-bisimulation between model M and pre-model N linking states s and u,
we say that Ms and Nu are trans-bisimilar, and write Ms �T Nu.

Folding preserves trans-bisimulation. Before stating the completeness, we need one
more result.

Lemma 9. Given Ms, Mt, and Mu, if Ms �T Mt �C Mu, then for all ϕ ∈ LGALD:
Ms |= ϕ if and only if Mt |= ϕ.

Proof. The proof is by induction on ϕ. Boolean cases, cases for knowledge and distributed
knowledge, and the case for public announcements are proved in [32, Lemma 26]. We show
the case of [G]ψ.

Assume that Ms |= [G]ψ. By the semantics this is equivalent to the fact that Ms |=
[ψG]ψ for all ψG. By the induction hypothesis we have that Mt |= [ψG]ψ for every ψG,
which is equivalent to Mt |= [G]ψ by the semantics.

Finally, we have everything we need to prove the completeness of GALD.

Theorem 2. For all ϕ ∈ LGALD, if ϕ is valid, then ϕ ∈ GALD.

Proof. Suppose towards a contradiction that ϕ is valid and ϕ 6∈ GALD. Since GALD
is a consistent theory, by Lemma 3 GALD + ¬ϕ is a consistent theory. By Lemma 4,
GALD+¬ϕ can be extended to a maximal consistent theory x such that GALD+¬ϕ ⊆ x,
and ¬ϕ ∈ x. By Lemma 8, we have that MC

x 6|= ϕ. Next, the canonical pseudo model MC
x

can be unravelled into the collectively bisimilar canonical pre-model MC
y , and the latter

can be folded into the trans-bisimilar canonical model MC
z . So, we have that MC

x �
C MC

y

and MC
y �

T MC
z . By Lemma 9, MC

x �
C MC

y �
T MC

z imply the modal equivalence of
MC

z and MC
x , and from MC

y 6|= ϕ we can infer that MC
z 6|= ϕ, which contradicts ϕ being a

validity.
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We can obtain corresponding proofs for GALDga+D and GALDpa-D in the same way.
For GALDga+D, it is enough to substitute LGEL with LGELD in A17 and R3, and treat every
ψG in the proof as a formula from LGELD. For GALDpa-D, each public announcement in the
axiomatisation, apart from cases A17 and R3, becomes some ψ ∈ LGAL, and the proof
follows.

Theorem 3. GALDpa-D and GALDga+D are sound and complete.

5 Expressivity

Having three different versions of group announcement logic with distributed knowledge,
it is very intriguing to analyse how they stand against each other in terms of expressivity.

Definition 16 (Expressivity). Let L1 and L2 be two languages. We say that L1 is at least
as expressive as L2 (L2 6 L1) if and only if for all ϕ ∈ L2 there is an equivalent ψ ∈ L1.
If L1 is not at least as expressive as L2, we write L2 66 L1. If L2 6 L1 and L1 66 L2, we
write L2 < L1, and we also write L2 ≡ L1 if L2 6 L1 and L1 6 L2. We will also abuse the
notation and write L instead of LL.

It is known that PALD ≡ ELD [32] since each formula of PALD can be translated into
an equivalent formula of ELD using the reduction axioms of PALD.

That all logics of group announcements with distributed knowledge are strictly more
expressive than PALD comes as no surprise.

Proposition 4. PALD < GALDpa-D, PALD < GALD, and PALD < GALDga+D

Proof. The proof is similar to the one for PAL < GAL [2, Theorem 19].

As LGALDpa-D is a syntactic fragment of LGALD, it is immediate that GALD is at least
as expressive as GALDpa-D.

Proposition 5. GALDpa-D 6 GALD

In the proof of the next proposition we exploit the fact that GALDpa-D can only witness
a difference between two bisimilar (but not necessarily collectively bisimilar) models via K
and D ‘steps’, which may be futile if models are large enough, i.e. if they exceed the modal
depth of a formula. GALD and GALDga+D, on the other hand, can witness the difference
via a public announcement of a PALD formula.

Proposition 6. GALD 66 GALDpa-D and GALDga+D 66 GALDpa-D

Proof. Let ϕ := p∧ K̂a(Kb¬p∧Kc¬p)∧ K̂a(K̂b(p∧Kap)∧ K̂c(p∧Kap)), χ := ¬KaD{b,c}p,
and consider a GALD formula [χ]〈{a, b, c}〉ϕ. Assume towards a contradiction that there
is an equivalent GALDpa-D formula ψ, and |ψ| = n.

Consider models Ms and Nt (Figures 5 and 6). For both models, the size of the lower
chain is n + 1 and the size of the upper chain is either n + 2, in the case of Ms, or n + 4,
in the case of Nt.
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Figure 5: Model Ms. Propositional variable p holds in black states.
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Figure 6: Model Nt. Propositional variable p holds in black states.

These models are bisimilar, and hence they agree on formulas of GAL. Structurally,
every model is almost symmetric, and the only difference are bits on the right: the cor-
responding states are not collectively bisimilar. Formula ϕ describes the configuration
depicted in Figure 7, i.e. it is false in Ms and Nt.

bc
s

aa

Figure 7: An {a, b, c}-definable submodel of Ms satisfying ϕ.

Let us argue that Ms |= [χ]〈{a, b, c}〉ϕ. Formula χ is true in every state of the model,
and hence the announcement of it has no effect, and the agents can make ϕ true (note that
the intersection of agents’ relations is the identity). The existence of the corresponding
group announcement follows from the fact that each state in Ms can be uniquely specified
by an epistemic formula. The upper rightmost state is the only one satisfying Kap. The
one next to it would be the only one satisfying ¬p ∧ K̂bKap ∧ K̂cKap, and so on.

On the other hand, we have that Nt 6|= [χ]〈{a, b, c}〉ϕ. The announcement of χ removes
two rightmost upper black states in the model, and the resulting updated model, Nχ

t , is
fully symmetric and upper and lower halves of the model become bisimilar. In order to get
a further update of Nχ

t that will be bisimilar to the model in Figure 7, the agents should
preserve states u and v in the upper half, and delete the corresponding ‘mirror’ states in
the lower half. However, since the upper and lower halves of Nχ

t are bisimilar, there is no
announcement that will be true in u and v, and false in the ‘mirror’ states. Hence, the
configuration depicted in Figure 7 is unattainable.

To see that Ms |= ψ if and only if Nt |= ψ, it is enough to notice the following two
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things. First, since Ms and Nt are bisimilar and distributed knowledge operators do not
occur in public announcements, denotations of [G]ψ′ and [χ]ψ′ coincide on both models.
Second, since the models are sufficiently large (the lengths of upper and lower chains are
n + 2, or n + 4 in the case of Nt, and n + 1 correspondingly) and |ψ| = n, no sequence of
nested K and D modalities occurring in ψ can reach the states that are not collectively
bisimilar (upper rightmost states).

Note that formula [χ]〈{a, b, c}〉Mϕ is a formula of GALDga+D, and upper and lower
halves of Nχ

t are collectively bisimilar. Hence the same proof applies.

Interestingly, GALDga+D is not more expressive than GALD and even GALDpa-D. In
the proof of this result, we use the fact that two models that are bisimilar except for
some propositional variable q, can be distinguished by GALD and GALDpa-D as group
announcements would implicitly quantify over formulas with q. At the same time, this
new q is only true in the states that GALDga+D could already distinguish, and thus the set
of all possible submodels a GALDga+D formula can enforce would coincide for both models.

Proposition 7. GALD 66 GALDga+D and GALDpa-D 66 GALDga+D.

Proof. Let us consider formula [{c}]¬〈{a, b, c}〉ϕ ∈ LGALD, where ϕ := K̂c(Ka¬p∧Kb¬p)∧
K̂c(K̂aKcp ∧ K̂bKcp). Assume that there is an equivalent formula ψ ∈ LGALDga+D . Since
the size of ψ is finite, we may assume that there is a propositional variable q that does not
appear in ψ. Also, consider two models Ms and Nt depicted in Figure 8. Models Ms and
Nt are almost identical with the only difference that q is false in all states of Ms and true
in the crossed-out states of Nt.

s3

s2

s4

s1ab

c
a

c
a

b

b
s

c

c

ab c

c

ab

c

t3

t2

t4

t1ab

c
a

c
a

b

b
t

c

c

ab c

c

ab

c

Figure 8: Models Ms (left) and Nt (right). Propositional variable p is true in black and
crossed-out states, and q is true in crossed-out states.

A model that satisfies ϕ is depicted in Figure 9. At the same time, neither Ms nor Nt

satisfy ϕ.
To see that Ms |= [{c}]¬〈{a, b, c}〉ϕ it is enough to notice that in Ms all states in the

upper part of the model are bisimilar to the corresponding states in the lower part (with
s1 and s2 being bisimilar to the rightmost lower black state, and s3 and s4 being bisimilar
to the penultimate lower white state). Hence, all the updates of Ms by announcements
of agent c and consecutive announcements of {a, b, c} would remove states symmetrically
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Figure 9: Model Ou satisfying ϕ.

from the upper and lower parts of the model, thus precluding obtaining a model bisimilar
to Ou and satisfying ϕ.

On the other hand, even though q does not occur in [{c}]¬〈{a, b, c}〉ϕ, we still implicitly
quantify over c- and {a, b, c}-announcements that may contain q. In particular, NKc¬q

t |=
〈{a, b, d}〉ϕ as NKc¬q

t (which is Nt without the crossed-out states) has two states uniquely
distinguishable by ¬p∧Ka¬p∧Kb¬p (these states are t3 and t4). The state to the left (the

upper black state) can be distinguished by p ∧ K̂c(¬p ∧Ka¬p ∧Kb¬p). In such a fashion
we can assign a unique formula to each state of NKc¬q

t , and, as the intersection of a−, b−,
and c−relations is the identity, {a, b, c} can force any submodel of NKc¬q

t including the
one isomorphic to Ou. Finally, from NKc¬q

t |= 〈{a, b, c}〉ϕ and Nt |= Kc¬q we infer that
Nt |= 〈{c}〉〈{a, b, c}〉ϕ.

That Ms |= ψ if and only if Nt |= ψ can be shown by a straightforward induction on
the complexity of ψ. Since M and N are collectively bisimilar except for q, propositional,
epistemic, and public announcement cases are trivial. For [G]Mψ′ we need to show that

for all ψG such that Ms′ |= ψG there is a formula ψ′G such that Nt′ |= ψ′G, MψG

s′ and N
ψ′
G

t′

are collectively bisimilar except for q, and vice versa. Notice that the only case when the
denotation of some ψG does not coincide on M and N is when ψG contains q. So let us
assume that ψG contains q. If Ms′ |= ψG, then there is an equivalent formula ψ′G with
the same denotation such that Nt′ |= ψ′G. This formula is exactly like ψG with all q’s
substituted with (p ∧ ¬p) (since q has the empty denotation in M). On the other hand, if
Nt′ |= ψG, then there is ψ′G where all q’s are replaced with D{a,b}p ∧Kcp (true only in s1
and s2, and t1 and t2), and Ms′ |= ψ′G. Since denotations of ψG and ψ′G coincide in both
cases, the resulting updates are collectively bisimilar except for q.

The overview of the relative expressivity of group announcement logics with distributed
knowledge is presented in Figure 10.

We leave as an open problem whether GALDga+D 66 GALD, and conjecture that it is
indeed the case.

6 Resolving Distributed Knowledge

In Section 3 we mentioned that distributed knowledge does not capture the property of
a group of agents ‘pooling their knowledge together’. The notion of resolved distributed
knowledge [5] was introduced as a better formalisation of this intuition.
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Prop. 7
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Prop. 5

Prop. 7

Prop. 6

Figure 10: Relative expressivity of GALDpa-D, GALD, and GALDga+D. An arrow from one
logic to another signifies that the latter is at least as expressive as the former, striked out
arrow — not at least as expressive, and the arrow with the question mark represents an
open problem.

Resolution modalities are dynamic modalities that are used to express what is true after
a group has actually shared what they know with each other. More precisely, they model
the result of the publicly observable event that they privately share all their knowledge
with each other. This is in contrast to standard distributed knowledge modalities which
are static.

Taking into account both the group and dynamic aspects of resolved distributed knowl-
edge, we discuss the extension of GAL with resolution modalities.

Definition 17 (Resolution). Let M = (S,∼, V ) be an epistemic model. A global G-
resolved update of M is the model MG = (SG,∼G, V G), where SG = S, V G = V , and

∼Ga =

{⋂
b∈G ∼b if a ∈ G,

∼a otherwise.

Observe that according to the definition, ∼{a}a =∼a, and thus M{a} is the same as M .
For an example, consider model M (Figure 11) and the result of resolution relative

to group {a, b} (model M{a,b}). Informally, if two states are distinguished by any agent
(meaning that there is no corresponding arrow between the states) from a group, then they
will be distinguished by all agents from the group after the resolved update.

Definition 18 (Language). The language of group announcement logic with resolved dis-
tributed knowledge is defined by the following grammar:

LGALR ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | RGϕ | [ϕ]ϕ | [G]ϕ

where p ∈ P , a ∈ A, and G ⊆ A.
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Figure 11: Models M (left) and M{a,b} (right).
Propositional variable p is true in black states.

The semantics is defined exactly
like for GAL, with the following addi-
tional clause for the resolution modal-
ities:

Ms |= RGϕ iff MG
s |= ϕ

Since resolved distributed knowl-
edge models private communication,
it does not coincide with group an-
nouncements, which are public. In-
deed, a group of agents may have a goal
to inform not only the members of the
group but other agents as well of some fact. Such a goal can be achieved via public an-
nouncements, but not necessarily via private communication. And vice versa, a group’s
epistemic goal may include not only informing each other of some fact, but also leaving
the outsiders unaware of the truthfulness of the fact. In such scenario, group announce-
ments fall short, while private communication allows the group to achieve their goal. We
demonstrate this in Fact 4.

Fact 4. 〈G〉ϕ→ RGϕ and RGϕ→ 〈G〉ϕ are not valid.

Proof. For the first formula, consider ϕ := Kap and models Ms and MKbp
s in Figure 12.

From the fact that MKbp
s |= ϕ it follows that Ms |= 〈{b}〉ϕ. At the same time, the b-

resolved update of Ms leaves the model intact, i.e. M
{b}
s is exactly the same as Ms. Hence,

from the fact that M
{b}
s 6|= Kap it follows that Ms 6|= R{b}Kap.

s t
a

s u v
a, b

u v
b

Figure 12: Models, from left to right, Ms, M
Kbp
s , Nu, and N

{a,c}
u . Propositional variable p

is true in black states.

For the second formula, consider ϕ := Kap∧¬Kbp and models Nu and N
{a,c}
u in Figure

12. From the fact that N
{a,c}
u |= ϕ it follows that Nu |= R{a,c}ϕ. On the other hand, due

to the fact that public announcements remove states from a model, there is no truthful
update of Nu that would satisfy ϕ.

Even if we require the target formula to be positive, neither resolution implies ability,
nor ability implies resolution. In the proof of the previous proposition, the counterexample
for 〈G〉ϕ→ RGϕ used positive formula Kap.

Fact 5. RGϕ→ 〈G〉ϕ with ϕ ∈ L+ is not valid.
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Proof. Let ϕ := Kap, and consider model Ms from Figure 2 . The {a, b}-resolved update

of Ms, M
{a,b}
s , is model Ms without any non-reflexive arrows between its states. It is clear

that M
{a,b}
s |= ϕ. On the other hand, Ms 6|= 〈{a, b}〉Kap due to the fact that Ms � Mv,

Mt �Mu, and by the argument similar to the one in the proof of Fact 3.

A perhaps surprising consequence of the proof of this proposition, where G = A, is that
semi-private communication between all agents does not imply the possibility of equivalent
public communication between all agents. Formally, RAϕ → 〈A〉ϕ is not valid even for
positive ϕ.

Some results on the expressivity of logics with distributed knowledge and resolution are
shown in [5]. Relative expressivity of GALR and versions of GALD is an open question.
Here we present some preliminary results.

Proposition 8. GALR 66 GALDpa-D

Proof. The proof is similar to the one for Proposition 6 with formula [χ]〈{a, b, c}〉ϕ being
substituted with R{b,c}〈{a, b, c}〉ϕ. Note that R{b,c} has no effect on Ms since b and c
relations always occur together. On the other hand, Nt update with R{b,c} makes the

rightmost upper black states disconnected from the rest of the model, and thus in N
{b,c}
t

the upper and lower halves are bisimilar. The remaining proof is the same as for Proposition
6.

Proposition 9. GALR 66 GALDga+D

Proof. Exactly like the one of Proposition 7 with [{c}]¬〈{a, b, c}〉ϕ ∈ LGALR.

7 Coalition Announcement Logic

Group announcement modalities 〈G〉 intuitively refer to coalitional ability : 〈G〉ϕ holds if
the group, or coalition, G has the ability to make ϕ true by making some joint public
announcement. General coalitional ability modalities have been extensively studied. Two
prime examples of logics with such modalities are coalition logic (CL) [28] and alternating-
time temporal logic [6]. However, these logics typically formalise a stronger notion of
coalitional ability, well-known from game theory, namely that the coalition can perform
some joint action such that no matter what the other agents do, ϕ will be true.

Coalition announcement logic (CAL) [3, 18] can be considered as either a restriction
of the set of actions in CL to public announcements, or as a variant of GAL, where the
agents outside of a group also participate in the joint announcement. CAL extends PAL
with formulas 〈[G]〉ϕ meaning that G can make a joint announcement such that no matter
what the remaining agents outside of G announce at the same time, ϕ will be true in the
resulting updated model. Thus, in CAL agents outside of the group G may prevent the
group from reaching its epistemic goal.

Formally, the language of CAL is the same as GAL except that the 〈G〉 modalities are
replaced by 〈[G]〉 (the dual diamond is taken as primary here instead of the box), with the
following semantics:
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Ms |= 〈[G]〉ϕ iff Ms |= ψG ∧ [ψG ∧ ψA\G]ϕ for some ψG ∈ LGEL and all ψA\G ∈ LA\GEL

We can now extend CAL with distributed knowledge operators into the logic CALD,
in the same way as for GAL and GALD.

It turns out that the CALD counterparts of most of the observations we made about
GALD still hold. This is not immediately obvious, since the semantics is significantly
different and, moreover, since the the expressive power of CAL and GAL is different [17].
In particular, we have the following (most of these points can be shown in the same way
as for GALD, and hence we omit the proofs):

• 〈[G]〉ϕ→ DG〈[G]〉ϕ is not valid.

• DG〈[G]〉ϕ→ 〈[G]〉DGϕ is valid.

• DG〈[G]〉ϕ→ 〈[G]〉ϕ is valid.

• 〈[G]〉DGϕ→ DG〈[G]〉ϕ is valid.

• DGϕ→ 〈[G]〉EGϕ is not valid.

• 〈[G]〉EGϕ→ DGϕ is not valid.

• DGϕ→ 〈[G]〉EGϕ with ϕ ∈ L+ is valid on finite bisimulation contracted models.

• DGϕ→ 〈[G]〉EGϕ with ϕ ∈ L+ is not valid in general.

We can consider variants of CALD similarly to what we did for GALD, i.e. by al-
lowing quantification over distributed knowledge formulas, or disallowing formulas with
distributed knowledge in public announcement operators. Let the resulting logics be
CALDga+D and CALDpa-D, respectively. We get the same relative expressivity results
as for GALD:

Proposition 10. • CALDpa-D < CALD

• CALDga+D 66 CALDpa-D

• CALD 66 CALDga+D

• CALDpa-D 66 CALDga+D

Sketch. For the two first points the proof is exactly like for Proposition 6. Note that G
is either the grand or the empty coalition here, so the semantics of the group/coalition
announcement operators coincide. For the two latter points, the proof is similar to that of
Proposition 7, except that we use ¬〈[{a, b, c}]〉ϕ as the distinguishing formula. In the first
model, the upper and the lower halves are bisimilar, and the agents cannot do anything
to force an interesting submodel. In the second model, we have special states with q and
can construct an announcement by the grand coalition to force the interesting submodel.
The reasoning that no CALDga+D formula can distinguish the models is the same as for
GALDga+D, i.e., for each announcement involving q there is an equivalent announcement
without q.
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We leave a more in-depth study of CALD to future work.

8 Conclusions and Future Work

In this paper we studied the interaction between group announcements and distributed
knowledge. In particular, we considered extensions of GAL with distributed knowledge
modalities. We looked at the following three semantic variants of the language, ordered by
the relative closeness to GAL:

• GALDpa-D: semantics of group announcement operators is identical to GAL, the
same set of public announcement operators as in GAL;

• GALD: semantics of group announcement operators is identical to GAL, public an-
nouncement operators include formulas with distributed knowledge;

• GALDga+D: group announcement operators quantify over formulas that may con-
tain distributed knowledge, public announcement operators include formulas with
distributed knowledge.

While the three languages have different expressive power, they, perhaps surprisingly, have
similar sound and complete axiomatisations. The corresponding proof systems are obtained
by combining the axioms and rules of GAL and PALD, showing that there are no non-
trivial interaction axioms. We find this result interesting as it is contrary to the intuitions
about distributed knowledge and the ability of groups.

The relationship between the scope of quantification and expressive power turned out
to be not obvious or trivial. In particular, broadening the scope of quantification does not
necessarily lead to the increase in expressive power: there are properties that GALDga+D

cannot express, and GALD and GALDpa-D can. On the other hand, GALD is more expres-
sive than GALDpa-D, which is as expected. Whether there are some properties expressible
in GALDga+D and not expressible in GALD is an open question.

In special cases (the positive fragments of the languages, bisimulation contracted mod-
els) the operators interact more in line with the intuition (see Fact 2). Note that the
formula in Fact 2 is valid on the class of finite bisimulation contracted models, but not
valid on the class of all models or even on the class of finite models (see Fact 3). This means
that the logic has a different axiomatisation on the class of finite bisimulation contracted
models. We find that interesting, because this is typically not the case for other epistemic
logics, with or without distributed knowledge. We leave a complete axiomatisation of a
logic for this class of models for future research.

We also briefly studied two related logics. The first is GAL extended with the closely
related dynamic version of distributed knowledge, namely resolved distributed knowledge.
We showed some expressivity results relating GAL with resolution and versions of GALD,
however the full expressivity picture is yet unclear. Moreover, a complete axiomatisation
of the logic is an open problem. Finally, there are also variants of the logic which are left
to future work to explore, such as GALRpa-R and GALRga+R (with the obvious meaning).
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The second logic related closely to GALD is CAL with distributed knowledge. Recall that
in CAL agents outside of a group also make a simultaneous joint announcement that can
preclude the group from reaching its epistemic goals. We argued that the expressivity
landscape for CALD is similar to that of GALD. Finding a complete axiomatisation of
CALD seems hard, since there are no known axiomatisations of CAL (although there is an
axiomatisation of an extended version of CAL [19]).

GALD and the related logics we have studied here are the first step towards enriching
logics of quantified actions (like [7, 25, 10, 14]) with distributed knowledge modalities.
Particularly, we believe that the completeness and expressivity results for APAL with dis-
tributed knowledge can be obtained via a straightforward adaptation of the corresponding
proofs presented in this paper.

Another avenue of further research is investigating logics of quantified actions in the
presence of other types of group knowledge like common knowledge [16, 31] and relativised
common knowledge [9]. So far, only APAL and GAL with common knowledge were studied
[20].
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[1] Thomas Ågotnes and Natasha Alechina. Coalition logic with individual, distributed
and common knowledge. Journal of Logic and Computation, 29(7):1041–1069, 2019.
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