Group Knowledge

Rustam Galimullin
rustam.galimullin@uib.no
University of Bergen, Norway

Louwe B. Kuijer
lbkuijer@liverpool.ac.uk University of Liverpool, UK

What is Group Knowledge?

Everybody knows. Everybody in G knows φ if each member of the group knows φ

Common knowledge. Everybody in G knows φ and everybody in G knows that everybody in G knows φ, and so on

Distributed knowledge. If agents in G would pool their knowledge together, they would know φ

Everybody Knows

Everybody knows. Everybody in G knows φ if each member of the group knows φ

$$
E_{G} \varphi:=\bigwedge_{a \in G} \square_{a} \varphi
$$

Semantics

$$
M, s \vDash E_{G} \varphi \text { iff } M, s \vDash \bigwedge_{a \in G} \square_{a} \varphi
$$

A logic with everybody knows is as expressive as the basic epistemic logic

Common knowledge

Common knowledge. Everybody in G knows φ and everybody in G knows that everybody in G knows φ, and so on

$$
\begin{gathered}
E_{G}^{0} \varphi:=\varphi \\
E_{G}^{n+1} \varphi:=E_{G} E_{G}^{n} \varphi
\end{gathered}
$$

$$
C_{G} \varphi:=\bigwedge_{n \in \mathbb{N}} E_{G}^{n} \varphi
$$

Common knowledge is closely related to the notion of consensus

Two generals problem

A

B

C

If only one general attacks, they will lose
If two generals attack at the same time, they will capture the castle

Two generals problem

Messenger can be captured on their way between the generals Is sending a message enough?

Two generals problem

Messenger can be captured on their way between the generals Is sending a message enough?

Two generals problem

Messenger can be captured on their way between the generals Are the generals ready to attack now?

Two generals problem

Messenger can be captured on their way between the generals Are the generals ready to attack now?

Two generals problem

Messenger can be captured on their way between the generals
Are the generals ready to attack now?

Two generals problem

The generals will never reach consensus
Or, the attack time will never become common knowledge

Common knowledge

Common knowledge. Everybody in G knows φ and everybody in G knows that everybody in G knows φ, and so on

$$
\begin{gathered}
E_{G}^{0} \varphi:=\varphi \\
E_{G}^{n+1} \varphi:=E_{G} E_{G}^{n} \varphi
\end{gathered}
$$

$$
C_{G} \varphi:=\bigwedge_{n \in \mathbb{N}} E_{G}^{n} \varphi
$$

$$
\begin{gathered}
M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
M, s \vDash C_{G} \varphi \text { iff } \forall t \in S: s \sim_{G}^{*} t \text { implies } M, t \vDash \varphi
\end{gathered}
$$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Equivalent definitions!

Distributed knowledge

Distributed knowledge. If agents in G would pool their knowledge together, they would know φ

Example

$$
\square_{a}(\varphi \rightarrow \psi) \quad \square_{b} \varphi{ }_{D_{\{a, b\}} \psi}
$$

$$
\sim_{G}^{\cap}=\bigcap_{a \in G} \sim_{a}
$$

$$
M, s \vDash D_{G} \varphi \text { iff } \forall t \in S: s \sim_{G}^{\cap} t \text { implies } M, t \vDash \varphi
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{\cap} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{n}=\bigcap_{a \in G} \sim_{a}
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{\cap} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{n}=\bigcap_{a \in G} \sim_{a}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi
\end{gathered}
$$

$M, s \vDash D_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{\cap} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{n}=\bigcap_{a \in G} \sim_{a}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi
\end{gathered}
$$

$M, s \vDash D_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{\cap} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{n}=\bigcap_{a \in G} \sim_{a}
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{\{a, b, c\}} \varphi$
$M, s \vDash E_{\{a, b\}} \varphi$

$$
M, s \vDash E_{G} \varphi \text { iff } M, s \vDash \bigwedge_{a \in G} \square_{a} \varphi
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{\{a, b, c\}} \varphi$
$M, s \vDash E_{\{a, b\}} \varphi$

$$
M, s \vDash E_{G} \varphi \text { iff } M, s \vDash \bigwedge_{a \in G} \square_{a} \varphi
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi
\end{gathered}
$$

$$
M, s \vDash E_{G} \varphi \text { iff } M, s \vDash \bigwedge_{a \in G} \square_{a} \varphi
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi
\end{gathered}
$$

$$
M, s \vDash E_{G} \varphi \text { iff } M, s \vDash \bigwedge_{a \in G} \square_{a} \varphi
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi \\
M, s \vDash C_{\{a, b\}} \varphi
\end{gathered}
$$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi \\
M, s \vDash C_{\{a, b\}} \varphi
\end{gathered}
$$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi \\
M, s \vDash C_{\{a, b\}} \varphi
\end{gathered}
$$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi \\
M, s \vDash C_{\{a, b\}} \varphi
\end{gathered}
$$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{\{a, b, c\}} \varphi$
$M, s \vDash E_{\{a, b\}} \varphi$
$M, s \vDash C_{\{a, b\}} \varphi$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$M, s \vDash D_{\{a, b\}} \varphi$
$M, s \vDash D_{\{a, b, c\}} \varphi$
$M, s \vDash E_{\{a, b\}} \varphi$
$M, s \vDash C_{\{a, b\}} \varphi$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge

M

$$
\begin{gathered}
M, s \vDash D_{\{a, b\}} \varphi \\
M, s \vDash D_{\{a, b, c\}} \varphi \\
M, s \vDash E_{\{a, b\}} \varphi \\
M, s \vDash C_{\{a, b\}} \varphi
\end{gathered}
$$

$M, s \vDash C_{G} \varphi$ iff $\forall t \in S: s \sim_{G}^{*} t$ implies $M, t \vDash \varphi$

$$
\sim_{G}^{*}=\left(\bigcup_{a \in G} \sim_{a}\right)^{*}
$$

Group Knowledge and Announcements

Why consider group knowledge?
More interesting epistemic goals.
Analysis of ability. Being able to achieve φ through communication as $\langle G\rangle \varphi$, or $\langle G\rangle \bigwedge \square_{a} \varphi$, or

$$
\bigwedge_{a \in G} \square_{a}\langle G\rangle \varphi, \text { or } D_{G}\langle G\rangle \varphi \text {, or } C_{G}\langle G\rangle \varphi \text {, and so on }
$$

Reasoning about sharing knowledge.

Sharing Knowledge

$D_{G} \varphi \rightarrow\langle G\rangle E_{G} \varphi$: Group can make its implicit knowledge explicit
$E_{G} \varphi \rightarrow\langle G\rangle C_{G} \varphi$: Group can make its knowledge common
$E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$: Group can share its knowledge with another group
$C_{G} \varphi \wedge C_{H} \psi \rightarrow\langle G \cup H\rangle C_{G \cup H}(\varphi \wedge \psi)$: Two groups can share their common knowledge with each other

Which of the following properties are valid?

Sharing Knowledge

$D_{G} \varphi \rightarrow\langle G\rangle E_{G} \varphi$: Group can make its implicit knowledge explicit
$E_{G} \varphi \rightarrow\langle G\rangle C_{G} \varphi$: Group can make its knowledge common
$E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$: Group can share its knowledge with another group
$C_{G} \varphi \wedge C_{H} \psi \rightarrow\langle G \cup H\rangle C_{G \cup H}(\varphi \wedge \psi)$: Two groups can share their common knowledge with each other

Which of the following properties are valid? None of them!

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
Take $E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$ with $G=\{b\}, H=\{a\}$, and $\varphi=\varphi_{M}$

$$
\square_{b} \varphi_{M} \rightarrow\langle b\rangle \square_{a} \varphi_{M}
$$

M

$$
\underbrace{s} \quad a \quad \bullet^{t}
$$

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
Take $E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$ with $G=\{b\}, H=\{a\}$, and $\varphi=\varphi_{M}$

$$
\square_{b} \varphi_{M} \rightarrow\langle b\rangle \square_{a} \varphi_{M}
$$

M

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
Take $E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$ with $G=\{b\}, H=\{a\}$, and $\varphi=\varphi_{M}$

$$
\square_{b} \varphi_{M} \rightarrow\langle b\rangle \square_{a} \varphi_{M}
$$

M

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
Take $E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$ with $G=\{b\}, H=\{a\}$, and $\varphi=\varphi_{M}$

$$
\square_{b} \varphi_{M} \rightarrow\langle b\rangle \square_{a} \varphi_{M}
$$

M

N

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
Take $E_{G} \varphi \rightarrow\langle G\rangle C_{H} \varphi$ with $G=\{b\}, H=\{a\}$, and $\varphi=\varphi_{M}$

$$
\square_{b} \varphi_{M} \rightarrow\langle b\rangle \square_{a} \varphi_{M}
$$

M

N

Culprit

The (in)famous offender

Moore sentence

$$
\varphi_{M}:=p \wedge \neg \square_{a} p
$$

Formula $\left[\varphi_{M}\right] \varphi_{M}$ is not valid on epistemic models
After announcement of φ_{M}, agent a is no more ignorant about p
Formulas with ignorance are unstable, i.e. they tend to change their truth value after new true information was provided

So how can we reclaim some of the intuitive properties?
Get rid of instability!

Positive Fragment

$$
\mathscr{E} \mathscr{L}^{+} \ni \varphi^{+}::=p|\neg p|\left(\varphi^{+} \wedge \varphi^{+}\right)\left|\left(\varphi^{+} \vee \varphi^{+}\right)\right| \square_{a} \varphi^{+}
$$

Theorem. $\left[\varphi^{+}\right] \varphi^{+}$is valid

For positive formulas (stable knowledge), many of our intuitions about information sharing are valid

$$
E_{G} \varphi^{+} \rightarrow\langle G\rangle C_{G} \varphi^{+} \quad E_{G} \varphi^{+} \rightarrow\langle G\rangle C_{H} \varphi^{+}
$$

$$
C_{G} \varphi^{+} \wedge C_{H} \psi^{+} \rightarrow\langle G \cup H\rangle C_{G \cup H}\left(\varphi^{+} \wedge \psi^{+}\right)
$$

$$
D_{G} \varphi^{+} \rightarrow\langle G\rangle E_{G} \varphi^{+}
$$

