Groups Vs. Coaltions

Rustam Galimullin
rustam.galimullin@uib.no
University of Bergen, Norway

Louwe B. Kuijer
lbkuijer@liverpool.ac.uk University of Liverpool, UK

Side by Side

GAL

$$
\begin{gathered}
M_{s} \vDash[G] \varphi \text { iff } \forall \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left[\psi_{G}\right] \varphi \\
M_{s} \vDash\langle G\rangle \varphi \text { iff } \exists \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left\langle\psi_{G}\right\rangle \varphi
\end{gathered}
$$

$$
\begin{gathered}
M_{s} \vDash\{[G\rceil\rceil \text { iff } \forall \psi_{G} \exists \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \rightarrow\left\langle\psi_{G} \wedge \chi_{A \backslash G}\right\rangle \varphi \\
M_{s} \vDash\langle\lceil G\rceil\rangle \varphi \text { iff } \exists \psi_{G} \forall \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \wedge\left[\psi_{G} \wedge \chi_{A \backslash G}\right] \varphi
\end{gathered}
$$

Truthful part

$$
\varphi_{a}:=\square_{a} \varphi
$$

Simultaneous part

$$
\varphi_{G}:=\bigwedge_{a \in G} \varphi_{a}
$$

Side by Side

GAL

$$
\begin{gathered}
M_{s} \vDash[G] \varphi \text { iff } \forall \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left[\psi_{G}\right] \varphi \\
M_{s} \vDash\langle G\rangle \varphi \text { iff } \exists \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left\langle\psi_{G}\right\rangle \varphi
\end{gathered}
$$

$$
\begin{gathered}
M_{s} \vDash\{[G\rangle\rceil \text { iff } \forall \psi_{G} \exists \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \rightarrow\left\langle\psi_{G} \wedge \chi_{A \backslash G}\right\rangle \varphi \\
M_{s} \vDash\left\langle\lceil G\rceil \varphi \text { iff } \exists \psi_{G} \forall \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \wedge\left[\psi_{G} \wedge \chi_{A \backslash G}\right] \varphi\right.
\end{gathered}
$$

Is it just me, or it looks like CAL modalities can be expressed with GAL modalities?

Side by Side

GAL

$$
\begin{gathered}
M_{s} \vDash[G] \varphi \text { iff } \forall \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left[\psi_{G}\right] \varphi \\
M_{s} \vDash\langle G\rangle \varphi \text { iff } \exists \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left\langle\psi_{G}\right\rangle \varphi
\end{gathered}
$$

$$
\begin{array}{r}
M_{s} \vDash[\langle G\rangle] \varphi \text { iff } \forall \psi_{G} \exists \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \rightarrow\left\langle\psi_{G} \wedge \chi_{A \backslash G}\right\rangle \varphi \\
M_{s} \vDash\langle[G]\rangle \varphi \text { iff } \exists \psi_{G} \forall \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \wedge\left[\psi_{G} \wedge \chi_{A \backslash G}\right] \varphi
\end{array}
$$

$\langle[A]\rangle \varphi \leftrightarrow\langle A\rangle \varphi$: CAL and GAL modalities coincide for the grand coalition
$\langle[G]\rangle \varphi \rightarrow\langle G\rangle \varphi$: if a group can force φ in the presence of opponents, it can also force φ alone

Side by Side

GAL

$$
\begin{gathered}
M_{s} \vDash[G] \varphi \text { iff } \forall \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left[\psi_{G}\right] \varphi \\
M_{s} \vDash\langle G\rangle \varphi \text { iff } \exists \psi_{G} \in \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash\left\langle\psi_{G}\right\rangle \varphi
\end{gathered}
$$

$$
\begin{gathered}
M_{s} \vDash\{[G\rangle\rceil \text { iff } \forall \psi_{G} \exists \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \rightarrow\left\langle\psi_{G} \wedge \chi_{A \backslash G}\right\rangle \varphi \\
M_{s} \vDash\left\langle\lceil G\rceil \varphi \text { iff } \exists \psi_{G} \forall \chi_{A \backslash G}: M_{s} \vDash \psi_{G} \wedge\left[\psi_{G} \wedge \chi_{A \backslash G}\right] \varphi\right.
\end{gathered}
$$

What about the following definition?
$\langle[G]\rangle \varphi \leftrightarrow\langle G\rangle[A \backslash G] \varphi$: we can decompose a coalition announcement into two group announcements

Side by Side

Both G and

$$
\langle[G]\rangle \varphi \rightarrow\langle G\rangle[A \backslash G] \varphi
$$

$A \backslash G$ make their announcements simultaneously
$A \backslash G$ makes their announcement after G, and they may have learnt new epistemic formulas

We quantify over all announcements by $A \backslash G$, including We know that after announcement ψ_{G}, we will learn $\chi_{A \backslash G}$

Proposition. $\langle[G]\rangle \varphi \rightarrow\langle G\rangle[A \backslash G] \varphi$ is valid

Forgetting How To Play
 $$
\langle G\rangle[A \backslash G] \varphi \rightarrow\langle[G]\rangle \varphi
$$

Can we apply a similar reasoning to this direction?

Forgetting How To Play
 $$
\langle G\rangle[A \backslash G] \varphi \rightarrow\langle[G]\rangle \varphi
$$

Can we apply a similar reasoning to this direction? No!

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

φ

$\$$
This submodel is asymmetric

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

$M^{\psi_{a}}$

$$
\psi_{a}:=\square_{a}\left(\neg p \rightarrow \diamond_{b} p\right)
$$

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

These states are identical
Any announcement that removes one, removes the other

$$
\psi_{a}:=\square_{a}\left(\neg p \rightarrow \widehat{\diamond}_{b} p\right)
$$

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

These states are identical
Any announcement that removes one, removes the other
There is no way to make $M^{*} \psi_{a}, s$ satisfy φ
Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

$M^{\psi_{a}}$

φ

We have that $M, s \vDash\langle a\rangle[b, c] \neg \varphi$
Left to show that $M, s \vDash\langle[a]\rangle \neg \varphi$, or, equivalently, $M, s \vDash[\langle a\rangle] \varphi$ $M, s \vDash[\langle a\rangle] \varphi$: agents b and c can force φ no matter what a announces at the same time

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

φ

$M, s \vDash[\langle a\rangle] \varphi$: agents b and c can force φ no matter what a announces at the same time

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

φ

$M, s \vDash[\langle a\rangle] \varphi$: agents b and c can force φ no matter what a announces at the same time

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \nprec\langle[a]\rangle \neg \varphi
$$

M

φ

This was but one possible translation of CAL modalities into GAL modalities

Maybe there is a translation that works?
We don't know!

Logics of Quantified Announcements

APAL is incomparable to GAL
There are some classes of models that GAL can distinguish and CAL cannot

There are some classes of models that APAL can distinguish and CAL cannot

Open Problem. Full expressivity characterisation of APAL, GAL, and CAL

Conjecture. APAL, GAL, and CAL are mutually incomparable

Logics of Quantified Announcements

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

M

φ

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle\lceil a\rceil\rangle \neg \varphi
$$

These states are identical
Any announcement that removes one, removes the other

$$
\psi_{a}:=\square_{a}\left(\neg p \rightarrow \widehat{\diamond}_{b} p\right)
$$

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Forgetting How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle[a]\rangle \neg \varphi
$$

Agents b and c 'forgot' the difference between them
And thus they lost their distinguishing powers

$$
\psi_{a}:=\square_{a}\left(\neg p \rightarrow \diamond_{b} p\right)
$$

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

APAL with Memory

$$
\begin{aligned}
& \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{M} \ni \varphi::=\mathrm{T}|p| 0\left|\varphi^{0}\right| \neg \varphi|(\varphi \wedge \varphi)| \square_{a} \varphi|U \varphi|[\varphi] \varphi \mid[!] \varphi \\
& \mathscr{G} \mathscr{A} \mathscr{L} \mathscr{M} \ni \varphi::=\mathrm{T}|p| 0\left|\varphi^{0}\right| \neg \varphi|(\varphi \wedge \varphi)| \square_{a} \varphi|U \varphi|[\varphi] \varphi \mid[G] \varphi \\
& \mathscr{C} \mathscr{A} \mathscr{L} \mathscr{M} \ni \varphi::=\mathrm{T}|p| 0\left|\varphi^{0}\right| \neg \varphi|(\varphi \wedge \varphi)| \square_{a} \varphi|U \varphi|[\varphi] \varphi \mid[\langle G\rangle] \varphi
\end{aligned}
$$

An epistemic model with memory $M=\left(S, S^{0}, \sim, V\right)$ is an epistemic model, where S^{0} is the initial domain, and $S=S^{0} * \psi$ for some quantifer-free ψ

Agents have memory only of the initial configuration

Remembering How To Play

$$
\langle a\rangle[b, c] \neg \varphi \rightarrow\langle\lceil a\rceil\rangle \neg \varphi
$$

M

φ

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Remembering How To Play

Agents has access to the initial model, and thus these states are still distinguishable

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Remembering How To Play

Agents has access to the initial model, and thus these states are still distinguishable

Alechina et al. The Expressivity of Quantified Group Announcements, 2022.

Remembering How To Play

Proposition. $\langle G\rangle[A \backslash G] \varphi \leftrightarrow\langle[G]\rangle \varphi$ is valid for GALM and CALM

Corollary. CALM can be translated to GALM

Open Problem. Is GALM translatable to CALM?

Take-home message

- Group announcement logic (GAL) and Coalition announcement logic (CAL) are more agent-centric versions of APAL
- CAL is game-theoretic in its nature
- Most probably, APAL, GAL, and CAL are all different expressivity-wise

Take-home message

Open Problem. Is there a finitary axiomatisation of GAL?

Open Problem. Is there an axiomatisation, finitary or infinitary, of CAL (without additional modalities)?

Open Problem. Full expressivity characterisation of APAL, GAL and CAL

Open Problem. Is GALM translatable to CALM?

