Arbitrary Public

Announcement Logic

Rustam Galimullin
rustam.galimullin@uib.no
University of Bergen, Norway

Louwe B. Kuijer lbkuijer@liverpool.ac.uk University of Liverpool, UK
'ESSLLI 2023"
: L إِ

We are dealing with S5

 models (agents' relation is equivalence)
Public Announcement Logic

Language of PAL

$$
\mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi
$$

Semantics
$M, s \vDash[\psi] \varphi$ iff $M, s \vDash \psi$ implies $M^{*} \psi, s \vDash \varphi$
$M, s \vDash\langle\psi\rangle \varphi$ iff $M, s \vDash \psi$ and $M^{*} \psi, s \vDash \varphi$

Updated model Let $M=(S, \sim, V)$ and $\varphi \in \mathscr{P} \mathscr{A} \mathscr{L}$. An updated model $M^{*} \varphi$ is a tuple $\left(S^{\varphi}, \sim^{\varphi}, V^{\varphi}\right)$, where

$$
\begin{aligned}
& \text { - } S^{\varphi}=\{s \in S \mid M, s \vDash \varphi\} ; \\
& \text { - } \sim_{a}^{\varphi}=\sim_{a} \cap\left(S^{\varphi} \times S^{\varphi}\right) ; \\
& \text { - } V^{\varphi}(p)=V(p) \cap S^{\varphi} .
\end{aligned}
$$

Axiomatisation of PAL

Axioms of EL

$$
\begin{aligned}
& {[\varphi] p \leftrightarrow(\varphi \rightarrow p)} \\
& {[\varphi] \neg \psi \leftrightarrow(\varphi \rightarrow \neg[\varphi] \psi)} \\
& {[\varphi](\psi \wedge \chi) \leftrightarrow([\varphi] \psi \wedge[\varphi] \chi)} \\
& {[\varphi] \square_{a} \psi \leftrightarrow\left(\varphi \rightarrow \square_{a}[\varphi] \psi\right)} \\
& {[\varphi][\psi] \chi \leftrightarrow([\varphi \wedge[\varphi] \psi] \chi)}
\end{aligned}
$$

From φ infer $[\psi] \varphi$

Theorem. PAL and EL are equally expressive

Theorem. PAL is sound and complete

Theorem. Complexity of SAT-PAL is PSPACEcomplete

Theorem. Complexity of MC-PAL is P-complete

Quantifying Over Updates

Existence: Having a starting configuration M and a property φ we would like to have, there is an epistemic action that results in configuration N satisfying φ

Quantifying Over Updates

Universality: Having a starting configuration M satisfying φ, we would like to ensure that all epistemic actions result in some configuration N satisfying φ

Why Quantification in DEL?

- Verification of functionality and security of a system

Functionality. There is a protocol that allows agents to achieve their goals

Why Quantification in DEL?

- Verification of functionality and security of a system

Security. No matter what agents do, they cannot reach some undesirable state

Why Quantification in DEL?

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness

Why Quantification in DEL?

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis

Protocol synthesis. Given a goal state, provide an action (or their sequence), that takes any give state to the goal one

Why Quantification in DEL?

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis
- Capturing the notion of knowability in philosophy

Knowability. Every true statement is knowable, in principle

Why Quantification in DEL?

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis
- Capturing the notion of knowability in philosophy
- And so on and so on and so on and so on...

Knowability. Every true statement is knowable, in principle

Quantifying Over Public Announcements

M

$\langle!\rangle \varphi$: There is a public announcement, after which φ is true

Quantifying Over Public Announcements

M

$$
{ }^{s} \bullet_{\varphi} M * \psi
$$

$\langle!\rangle \varphi$: There is a public announcement, after which φ is true

Quantifying Over Public Announcements

M

$$
{ }^{s} \bullet_{\varphi} M^{*} \psi
$$

[!] φ : After all public announcements, φ is true

Quantifying Over Public Announcements

M

$$
s_{\Theta_{\varphi}} \quad M^{*} \chi
$$

[!] φ : After all public announcements, φ is true

Quantifying Over Public Announcements

```
M
    M*}
    s}\mp@subsup{|}{\varphi}{
```

[!] φ : After all public announcements, φ is true

Card Example

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

$M, s \vDash\langle!\rangle\left(\square_{a}\right.$ deal $\wedge \neg \square_{b}$ deal $\wedge \neg \square_{c}$ deal $)$

$$
\varphi:=\left(\boldsymbol{\varphi}_{b} \vee \boldsymbol{\nu}_{b}\right) \wedge\left(\boldsymbol{\&}_{c} \vee \boldsymbol{\nu}_{c}\right)
$$

Card Example

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

$M, s \vDash\langle!\rangle\left(\square_{a}\right.$ deal $\wedge \neg \square_{b}$ deal $\wedge \neg \square_{c}$ deal $)$

$$
\varphi:=\left(\boldsymbol{\varphi}_{b} \vee \boldsymbol{\nu}_{b}\right) \wedge\left(\boldsymbol{\&}_{c} \vee \boldsymbol{\nu}_{c}\right)
$$

Card Example

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

$M, s \vDash\langle!\rangle\left(\square_{a}\right.$ deal $\wedge \neg \square_{b}$ deal $\wedge \neg \square_{c}$ deal $)$

$$
\varphi:=\left(\boldsymbol{\varphi}_{b} \vee \boldsymbol{\nu}_{b}\right) \wedge\left(\boldsymbol{\&}_{c} \vee \boldsymbol{\nu}_{c}\right)
$$

Card Example

After any announcement, Asgeir has one of the cards

$$
M, s \vDash[!]\left(\boldsymbol{\rightharpoonup}_{a} \vee \boldsymbol{\&}_{a} \vee \boldsymbol{\oplus}_{a}\right)
$$

Card Example

After any announcement, Asgeir has one of the cards

$$
M, s \vDash[!]\left(\boldsymbol{\rightharpoonup}_{a} \vee \boldsymbol{\&}_{a} \vee \boldsymbol{\oplus}_{a}\right)
$$

Card Example

After any announcement, Asgeir has one of the cards

$$
M, s \vDash[!]\left(\boldsymbol{\rightharpoonup}_{a} \vee \boldsymbol{\&}_{a} \vee \boldsymbol{\oplus}_{a}\right)
$$

Card Example

After any announcement, Asgeir has one of the cards

$$
M, s \vDash[!]\left(\boldsymbol{\rightharpoonup}_{a} \vee \boldsymbol{\&}_{a} \vee \boldsymbol{\oplus}_{a}\right)
$$

Arbitrary PAL

Language of APAL

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

Do you notice anything interesting in the definition of semantics?

Arbitrary PAL

Language of APAL

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

$$
\begin{gathered}
M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L}: M_{s} \vDash[\psi] \varphi \\
{[p] \varphi,\left[\square_{a} \diamond_{b}(p \rightarrow q)\right] \varphi,[[!] \varphi] \varphi}
\end{gathered}
$$

Why would we restrict the scope of quantification?

Arbitrary PAL

Language of APAL $\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi$

Semantics

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

$$
\begin{gathered}
M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi \\
{[p] \varphi,\left[\square_{a} \diamond_{b}(p \rightarrow q)\right] \varphi,[[!] \varphi] \varphi} \\
M, s \vDash[[!] \varphi] \varphi \text { iff } \forall \psi \in \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[[\psi] \varphi] \varphi \\
{[[p] \varphi] \varphi,\left[\left[\square_{a} \diamond_{b}(p \rightarrow q)\right] \varphi\right] \varphi,[[[!]] \varphi] \varphi}
\end{gathered}
$$

Arbitrary PAL

Language of APAL

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

Quantification is restricted to formulas of PAL in order to avoid circularity

Arbitrary PAL

Language of APAL

$$
\mathscr{A P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}): M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

Some validities

$$
\begin{array}{ll}
\langle\psi\rangle \varphi \rightarrow\langle!\rangle \varphi & {[!] \varphi \rightarrow \varphi} \\
\langle!\rangle \varphi \leftrightarrow\langle!\rangle\langle!\rangle \varphi & \langle!\rangle[!] \varphi \leftrightarrow[!]\langle!\rangle \varphi
\end{array}
$$

Quantification is restricted to formulas of PAL in order to avoid circularity

APAL versus PAL

Theorem. PAL and EL are equally expressive
What do you think about APAL versus PAL?
The easy direction. $\mathscr{P} \mathscr{A} \mathscr{L} \subseteq \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L}$: APAL subsumes PAL

The not so easy direction. $\mathscr{A} \mathscr{A} \mathscr{L} \subseteq \mathscr{P} \mathscr{A} \mathscr{L} ?$
[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

APAL versus PAL

Theorem. PAL and EL are equally expressive

The not so easy direction. $\mathscr{A} \mathscr{A} \mathscr{L} \subseteq \mathscr{P} \mathscr{A} \mathscr{L} ?$
[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

Since PAL = EL, we provide a proof for the case of EL Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$

There is a public announcement such that a learns p and b does not know that a has learned p

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, there must be a $q \in P$ that does not appear in ψ
We will exploit the feature that $\langle!\rangle$ still quantifies over formulas
with q

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

$$
\begin{aligned}
& \text { M } \\
& N \\
& M, s \vDash\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right) \text { ? }
\end{aligned}
$$

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ
$M^{*} p$
N

$M, s \vDash\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right) ?$

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$

Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

M

What about ψ ?
N

APAL versus PAL

Consider $\langle!\rangle\left(\square_{a} p \wedge \neg \square_{b} \square_{a} p\right)$
Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula $>$ Contradiction!
Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

M

ψ can not tell the difference between M and N
N

APAL versus PAL: Encore

In the presented proof, we exploited the feature that $\langle!\rangle$ quantifies over all propositional variables

Recall that $\langle!\rangle$ quantifies over formulas of arbitrary finite modal depth. We will exploit this feature now Consider $\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)$

Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

APAL versus PAL: Encore

 Consider $\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)$Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, it has some finite modal depth n

$$
\begin{aligned}
& M, t \vDash \neg \square_{a} \neg p \wedge \square_{b} \neg p \\
& N, s_{n} \vDash \square_{a} p
\end{aligned}
$$

N

APAL versus PAL: Encore

 Consider $\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)$Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, it has some finite modal depth n

$$
M
$$

$$
M, t \vDash\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right) ?
$$

N

APAL versus PAL: Encore

$$
\text { Consider }\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)
$$

Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, it has some finite modal depth n

APAL versus PAL: Encore

 Consider $\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)$Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, it has some finite modal depth n

M

$$
\begin{gathered}
M, t \not \vDash\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right) \\
N, s_{1} \vDash\langle\psi\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)
\end{gathered}
$$

N

State s_{n} is unique and allows us to specify uniquely other states

APAL versus PAL: Encore

 Consider $\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)$Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula
Since ψ is finite, it has some finite modal depth n

M

$$
\begin{aligned}
& M, t \vDash\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right) \\
& N, s_{1} \vDash\langle\psi\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)
\end{aligned}
$$

N

State s_{n} is unique and allows us to specify uniquely other states

APAL versus PAL: Encore

$$
\text { Consider }\langle!\rangle\left(\square_{a} \neg p \wedge \neg \square_{b} \square_{a} \neg p\right)
$$

Assume that there is a $\psi \in \mathscr{E} \mathscr{L}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M and N are 'the same' up to n steps

Cannot find the difference with $\psi!$

APAL versus PAL

Theorem. PAL and EL are equally expressive
$[!] \varphi$ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

Theorem. APAL is more expressive than PAL and EL

There are no reduction axioms for APAL, hence we have to find a proper axiomatisation...

Axiomatisation of APAL

Language of APAL

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right|[\varphi] \varphi \mid[!] \varphi
$$

Semantics

$$
M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi
$$

Axioms of EL and PAL
$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L}\} \quad \eta\left(\left[\psi_{1}\right] \varphi\right) \eta\left(\left[\psi_{2}\right] \varphi\right) \eta\left(\left[\psi_{3}\right] \varphi\right) \ldots$ infer $\eta([!] \varphi)$

Infinite number of premises
$\eta([!] \varphi)$

We call such a rule infinitary

Completeness of APAL

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

Instances of an axiom schema

Completeness of APAL

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

MCS [!] φ
$\left[\psi_{1}\right] \varphi$
$\left[\psi_{2}\right] \varphi$
$\left[\psi_{3}\right] \varphi$

By closure under MP

Completeness of APAL

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL $\quad M, s \vDash[!] \varphi$ iff $\forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi$
$M, s \vDash\langle!\rangle \varphi$ iff $\exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash\langle\psi\rangle \varphi$

MCS

Add a witness

Completeness of APAL

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$
\begin{aligned}
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi \\
& M, s \vDash\langle!\rangle \varphi \text { iff } \exists \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash\langle\psi\rangle \varphi
\end{aligned}
$$

$$
\begin{gathered}
\text { Mcs } \\
\neg[!] \varphi \\
\neg\left[\psi_{n}\right] \varphi
\end{gathered}
$$

Add a witness

Axiomatisation of APAL

Axioms of EL and PAL

$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L}\}$ infer $\eta([!] \varphi)$

Theorem. There is a sound and complete infinitary axiomatisation of APAL

Open Problem. Is there a finitary axiomatisation of APAL?

Backstabbing the OP

A logic has the finite model property (FMP) iff every formula of the logic that is true in some model is also true in a finite model

Finitary axiomatisation \wedge FMP \rightarrow Decidability
φ

Finitary axiomatisation
Finding the proof of $\neg \varphi$
If successful, φ is not satisfiable

FMP
Looking for a finite model of φ
If successful, φ is satisfiable

Backstabbing the OP

A logic has the finite model property (FMP) iff every formula of the logic that is true in some model is also true in a finite model

Finitary axiomatisation \wedge FMP \rightarrow Decidability
\neg Decidability $\rightarrow \neg$ Finitary axiomatisation $\vee \neg$ FMP

APAL is undecidable. If we show that APAL has the FMP, then we will know that it is not finitely axiomatisable...

No FMP for APAL

$[!] \varphi$ is quite powerful as it quantifies over formulas with all
propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

However, it is not powerful enough to pick out all interesting submodels of a model
M

Example. Try removing all states apart from s using only propositional announcements

Back to the OP

\neg Decidability $\rightarrow \neg$ Finitary axiomatisation $\vee \neg$ FMP

One can also show the lack of the FMP via the arbitrary modal depth way

Open Problem. Is there a finitary axiomatisation of APAL?

Kuijer. Expressivity of Logics of Knowledge and Action, 2014
French, Van Ditmarsch. Undecidability for arbitrary public announcement logic, 2008.
Urquhart. Decidability and the Finite Model Property, 1981.
French, Van Ditmarsch, RG. No Finite Model Property for Logics of Quantified Announcements, 2021.

Overview of APAL

Axioms of EL and PAL

$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L}\}$ infer $\eta([!] \varphi)$

Infinite number of premises

Open Problem. Is there a finitary axiomatisation of APAL?

Theorem. APAL is more expressive than PAL

Theorem. APAL is sound and complete

Theorem. SAT-APAL is undecidable

Theorem. Complexity of MC-APAL is PSPACEcomplete

Take-home message

- Quantifying is fun
- Quantifying in DEL (usually) yields unexpected results
- APAL quantifies over PAL formulas that may include any propositional variables and can be of any arbitrary finite depth

Open Problem. Is there a finitary axiomatisation of APAL?

