Arbitrary Public Announcement Logic

ESSLLI 2023

LJUBLJANA > SLOVENIA

Rustam Galimullin

rustam.galimullin@uib.no University of Bergen, Norway Louwe B. Kuijer

lbkuijer@liverpool.ac.uk University of Liverpool, UK

We are dealing with S5 models (agents' relation is equivalence)

Public Announcement Logic

Language of $\mathscr{PAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi| [\varphi] \varphi$ PAL

Semantics

 $M, s \models [\psi]\varphi \text{ iff } M, s \models \psi \text{ implies } M^*\psi, s \models \varphi$ $M, s \models \langle \psi \rangle \varphi \text{ iff } M, s \models \psi \text{ and } M^*\psi, s \models \varphi$

Updated model

Let $M = (S, \sim, V)$ and $\varphi \in \mathscr{PAL}$. An updated model $M * \varphi$ is a tuple $(S^{\varphi}, \sim^{\varphi}, V^{\varphi})$, where • $S^{\varphi} = \{s \in S \mid M, s \models \varphi\};$ • $\sim_{a}^{\varphi} = \sim_{a} \cap (S^{\varphi} \times S^{\varphi});$

• $V^{\varphi}(p) = V(p) \cap S^{\varphi}$.

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.

Axiomatisation of PAL

Axioms of EL $[\varphi]p \leftrightarrow (\varphi \rightarrow p)$ $[\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi]\psi)$ $[\varphi](\psi \land \chi) \leftrightarrow ([\varphi]\psi \land [\varphi]\chi)$ $[\varphi] \square_a \psi \leftrightarrow (\varphi \rightarrow \square_a [\varphi]\psi)$ $[\varphi][\psi]\chi \leftrightarrow ([\varphi \land [\varphi]\psi]\chi)$ From φ infer $[\psi]\varphi$ **Theorem**. PAL and EL are equally expressive

Theorem. PAL is sound and complete

Theorem. Complexity of SAT-PAL is PSPACEcomplete

Theorem. Complexity of MC-PAL is P-complete

Van Benthem, Kooi. *Reduction axioms for epistemic actions*, 2004. Lutz. *Complexity and Succinctness of Public Announcement Logic*, 2006. Van Ditmarsch, Van der Hoek, Kooi. *Dynamic Epistemic Logic*, Section 4. 2008.

Quantifying Over Updates

Existence: Having a starting configuration M and a property φ we would like to have, there is an epistemic action that results in configuration N satisfying φ

Quantifying Over Updates

Universality: Having a starting configuration M satisfying φ , we would like to ensure that all epistemic actions result in some configuration N satisfying φ

• Verification of functionality and security of a system

Functionality. There is a protocol that allows agents to achieve their goals

• Verification of functionality and security of a system

Security. No matter what agents do, they cannot reach some undesirable state

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis

Protocol synthesis. Given a goal state, provide an action (or their sequence), that takes any give state to the goal

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis
- Capturing the notion of knowability in philosophy

Knowability. Every true statement is knowable, in principle

- Verification of functionality and security of a system
- Use in other DEL-inspired logics, e.g. social networks and awareness
- Protocol synthesis
- Capturing the notion of knowability in philosophy
- And so on and so on and so on and so on...

Knowability. Every true statement is knowable, in principle

 $\langle ! \rangle \varphi$: There is a public announcement, after which φ is true

 $\langle ! \rangle \varphi$: There is a public announcement, after which φ is true

 $[!]\varphi$: After all public announcements, φ is true

 $[!]\varphi$: After all public announcements, φ is true

 $[!]\varphi$: After all public announcements, φ is true

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

 $M, s \models \langle ! \rangle (\Box_a \text{deal} \land \neg \Box_b \text{deal} \land \neg \Box_c \text{deal})$ $\varphi := (\spadesuit_b \lor \blacktriangledown_b) \land (\clubsuit_c \lor \blacktriangledown_c)$

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

 $M, s \models \langle ! \rangle (\Box_a \text{deal} \land \neg \Box_b \text{deal} \land \neg \Box_c \text{deal})$ $\varphi := (\spadesuit_b \lor \blacktriangledown_b) \land (\clubsuit_c \lor \blacktriangledown_c)$

There is an announcement such that Asgeir knows the deal, and Bendik and Caroline do not

 $M, s \models [!](\blacklozenge_a \lor \spadesuit_a \lor \spadesuit_a)$

 $M, s \models [!](\blacklozenge_a \lor \spadesuit_a \lor \spadesuit_a)$

 $M, s \models [!](\blacklozenge_a \lor \spadesuit_a \lor \spadesuit_a)$

 $M, s \models [!](\blacklozenge_a \lor \spadesuit_a \lor \spadesuit_a)$

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$
$$M, s \models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi$$

Do you notice anything interesting in the definition of semantics?

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$
$$M, s \models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi$$

$$\begin{split} M, s \models [!]\varphi & \text{iff } \forall \psi \in \mathscr{APAL} : M_s \models [\psi]\varphi \\ [p]\varphi, [\Box_a \diamondsuit_b (p \to q)]\varphi, [[!]\varphi]\varphi \end{split}$$

Why would we restrict the scope of quantification?

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$
$$M, s \models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi$$

$$\begin{split} M, s &\models [!]\varphi \text{ iff } \forall \psi \in \mathscr{APAL} : M, s \models [\psi]\varphi \\ [p]\varphi, [\Box_a \diamondsuit_b (p \to q)]\varphi, [[!]\varphi]\varphi \\ M, s &\models [[!]\varphi]\varphi \text{ iff } \forall \psi \in \mathscr{APAL} : M, s \models [[\psi]\varphi]\varphi \\ [[p]\varphi]\varphi, [[\Box_a \diamondsuit_b (p \to q)]\varphi]\varphi, [[[!]]\varphi]\varphi \end{split}$$

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$
$$M, s \models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi$$

Quantification is restricted to formulas of PAL in order to avoid circularity

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$
$$M, s \models \langle ! \rangle \varphi \text{ iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi$$

Some validities

$$\begin{array}{ll} \langle \psi \rangle \varphi \to \langle ! \rangle \varphi & [!] \varphi \to \varphi \\ \langle ! \rangle \varphi \leftrightarrow \langle ! \rangle \langle ! \rangle \varphi & \langle ! \rangle [!] \varphi \leftrightarrow [!] \langle ! \rangle \varphi \end{array}$$

Quantification is restricted to formulas of PAL in order to avoid circularity

Theorem. PAL and EL are equally expressive

What do you think about APAL versus PAL?

The easy direction. $\mathcal{PAL} \subseteq \mathcal{APAL}$: APAL subsumes PAL

The not so easy direction. $\mathscr{APAL} \subseteq \mathscr{PAL}$?

[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

Theorem. PAL and EL are equally expressive

The not so easy direction. $\mathscr{APAL} \subseteq \mathscr{PAL}$?

[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

Since PAL = EL, we provide a proof for the case of EL

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

There is a public announcement such that a learns p and b does not know that a has learned p

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, there must be a $q \in P$ that does not appear in ψ

We will exploit the feature that $\langle ! \rangle$ still quantifies over formulas with q

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Consider $\langle ! \rangle (\Box_a p \land \neg \Box_b \Box_a p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula Contradiction!

In the presented proof, we exploited the feature that $\langle ! \rangle$ quantifies over all propositional variables

Recall that (!) quantifies over formulas of arbitrary finite modal depth. We will exploit this feature now

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

a

 $\{p\}$

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

$$M, t \models \langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)?$$

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

$$M, t \models \langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)?$$

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

$$\begin{split} M,t \not\models \langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p) \\ N,s_1 \models \langle \psi \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p) \end{split}$$

State s_n is unique and allows us to specify uniquely other states

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

a

 $\{p\}$

$$M, t \not\models \langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$$
$$N, s_1 \not\models \langle \psi \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$$

 $N \xrightarrow{s a} a \xrightarrow{s_1 b} \underbrace{s_2 a}_{\{p\}} a \xrightarrow{s_3 b} \dots \underbrace{b}_{\{p\}} a \xrightarrow{s_{n-1} a}_{\{p\}} a \xrightarrow{s_n}_{\{p\}} \dots \underbrace{b}_{\{p\}} \dots \underbrace{$

State s_n is unique and allows us to specify uniquely other states

Consider $\langle ! \rangle (\Box_a \neg p \land \neg \Box_b \Box_a \neg p)$

Assume that there is a $\psi \in \mathscr{CL}$ which is equivalent to the given APAL formula

Since ψ is finite, it has some finite modal depth n

M

a

 $\{p\}$

M and N are 'the same' up to n steps

Cannot find the difference with ψ !

Theorem. PAL and EL are equally expressive

[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

Theorem. APAL is more expressive than PAL and EL

There are no reduction axioms for APAL, hence we have to find a proper axiomatisation...

Axiomatisation of APAL

Language of APAL

 $\mathscr{APAL} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \square_a \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$$

Axioms of EL and PAL $[!]\varphi \rightarrow [\psi]\varphi \text{ with } \psi \in \mathscr{PAL}$ From $\{\eta([\psi]\varphi) | \psi \in \mathscr{PAL}\}$ infer $\eta([!]\varphi)$ Infinite number of premises

 $\eta([\psi_1]\varphi) \eta([\psi_2]\varphi) \eta([\psi_3]\varphi) \cdots$ $\eta([!]\varphi)$

We call such a rule infinitary

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$\begin{split} M, s \models [!]\varphi & \text{iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi \\ M, s \models \langle ! \rangle \varphi & \text{iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi \end{split}$$

Instances of an axiom schema

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$\begin{split} M, s \models [!]\varphi & \text{iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi \\ M, s \models \langle ! \rangle \varphi & \text{iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi \end{split}$$

By closure under MP

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$\begin{split} M, s &\models [!]\varphi & \text{iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi \\ M, s \models \langle ! \rangle \varphi & \text{iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi \end{split}$$

Add a witness

We can prove completeness using the canonical model construction and a Lindenbaum type lemma

Recall APAL

$$\begin{split} M, s \models [!]\varphi & \text{iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi \\ M, s \models \langle ! \rangle \varphi & \text{iff } \exists \psi \in \mathscr{PAL} : M, s \models \langle \psi \rangle \varphi \end{split}$$

Add a witness

Axiomatisation of APAL

Axioms of EL and PAL $[!]\varphi \rightarrow [\psi]\varphi \text{ with } \psi \in \mathscr{PAL}$ From $\{\eta([\psi]\varphi) | \psi \in \mathscr{PAL}\}$ infer $\eta([!]\varphi)$

Theorem. There is a sound and complete infinitary axiomatisation of APAL

Open Problem. Is there a finitary axiomatisation of APAL?

Backstabbing the OP

A logic has the finite model property (FMP) iff every formula of the logic that is true in some model is also true in a finite model

Finitary axiomatisation \land FMP \rightarrow Decidability

Finitary axiomatisation

Finding the proof of $\neg \phi$

If successful, φ is not satisfiable

FMP

Looking for a finite model of φ If successful, φ is satisfiable

Urquhart. Decidability and the Finite Model Property, 1981.

Backstabbing the OP

A logic has the finite model property (FMP) iff every formula of the logic that is true in some model is also true in a finite model

Finitary axiomatisation \land FMP \rightarrow Decidability

 \neg Decidability $\rightarrow \neg$ Finitary axiomatisation $\lor \neg$ FMP

APAL is undecidable. If we show that APAL has the FMP, then we will know that it is not finitely axiomatisable...

Urquhart. Decidability and the Finite Model Property, 1981.

No FMP for APAL

[!] φ is quite powerful as it quantifies over formulas with all propositional variables (even those not explicitly present in φ) and over formulas of arbitrary finite modal depth

However, it is not powerful enough to pick out all interesting submodels of a model

Example. Try removing all states apart from *s* using only propositional announcements

French, Van Ditmarsch, RG. No Finite Model Property for Logics of Quantified Announcements, 2021.

Back to the OP

¬Decidability \rightarrow ¬Finitary axiomatisation \lor ¬FMP

One can also show the lack of the FMP via the arbitrary modal depth way

Open Problem. Is there a finitary axiomatisation of APAL?

Kuijer. *Expressivity of Logics of Knowledge and Action*, 2014 French, Van Ditmarsch. *Undecidability for arbitrary public announcement logic*, 2008. Urquhart. *Decidability and the Finite Model Property*, 1981. French, Van Ditmarsch, RG. *No Finite Model Property for Logics of Quantified Announcements*, 2021.

Overview of APAL

Axioms of EL and PAL $[!] \varphi \to [\psi] \varphi$ with $\psi \in \mathscr{P}\mathscr{A}\mathscr{L}$ From $\{\eta([\psi]\varphi) | \psi \in \mathscr{PAL}\}$ infer $\eta([!]\varphi)$

Theorem. APAL is more expressive than PAL

Theorem. APAL is sound and complete

Infinite number of premises

Theorem. SAT-APAL is undecidable

Open Problem. Is there a finitary axiomatisation of APAL?

Theorem. Complexity of MC-APAL is PSPACEcomplete

French, Van Ditmarsch. *Undecidability for arbitrary public announcement logic*, 2008. Balbiani, Van Ditmarsch. *A simple proof of the completeness of APAL*, 2015.

Take-home message

- Quantifying is fun
- Quantifying in DEL (usually) yields unexpected results
- APAL quantifies over PAL formulas that may include any propositional variables and can be of any arbitrary finite depth

Open Problem. Is there a finitary axiomatisation of APAL?