APAL with Common

 KnowledgeRustam Galimullin
rustam.galimullin@uib.no
University of Bergen, Norway

Louwe B. Kuijer
lbkuijer@liverpool.ac.uk University of Liverpool, UK
'ESSLLI 2023"

APAL with Common Knowledge

$\begin{gathered}\text { Language of } \\ \text { APALC }\end{gathered} \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right| C_{G} \varphi|[\varphi] \varphi|[!] \varphi$

$$
\begin{aligned}
& M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}) M, s \vDash[\psi] \varphi
\end{aligned}
$$

We quantify over a quantifier-free fragment

APAL with Common Knowledge

Language of APALC

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right| C_{G} \varphi|[\varphi] \varphi|[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
\end{aligned}
$$

Axioms of EL and PAL
$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \quad C_{G} \varphi \rightarrow E_{G}^{n} \varphi$ with $n \in \mathbb{N}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}\}$ From $\left\{\eta\left(E_{G}^{n} \varphi\right) \mid n \in \mathbb{N}\right\}$ infer $\eta([!] \varphi)$ infer $\eta\left(C_{G} \varphi\right)$

Announcement part

Ågotnes, RG. Quantifying over information change with common knowledge, 2023.

APAL with Common Knowledge

Language of APALC

Semantics

$$
\begin{aligned}
& M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
\end{aligned}
$$

Axioms of EL and PAL
$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \quad C_{G} \varphi \rightarrow E_{G}^{n} \varphi$ with $n \in \mathbb{N}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}\}$ From $\left\{\eta\left(E_{G}^{n} \varphi\right) \mid n \in \mathbb{N}\right\}$ infer $\eta([!] \varphi) \quad$ infer $\eta\left(C_{G} \varphi\right)$

Common knowledge part
Ågotnes, RG. Quantifying over information change with common knowledge, 2023.

APAL with Common Knowledge

Language of APALC

$$
\mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right| C_{G} \varphi|[\varphi] \varphi|[!] \varphi
$$

Semantics

$$
\begin{aligned}
& M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
\end{aligned}
$$

Axioms of EL and PAL
$[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \quad C_{G} \varphi \rightarrow E_{G}^{n} \varphi$ with $n \in \mathbb{N}$
From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}\}$ From $\left\{\eta\left(E_{G}^{n} \varphi\right) \mid n \in \mathbb{N}\right\}$ infer $\eta([!] \varphi) \quad$ infer $\eta\left(C_{G} \varphi\right)$

Theorem. APALC is sound and complete
Ågotnes, RG. Quantifying over information change with common knowledge, 2023.

APAL with Common Knowledge

$\begin{gathered}\text { Language of } \\ \text { APALC }\end{gathered} \mathscr{A} \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C} \ni \varphi::=p|\neg \varphi|(\varphi \wedge \varphi)\left|\square_{a} \varphi\right| C_{G} \varphi|[\varphi] \varphi|[!] \varphi$

$$
\begin{aligned}
& M, s \vDash C_{G} \varphi \text { iff } \forall n \in \mathbb{N}: M, s \vDash E_{G}^{n} \varphi \\
& M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
\end{aligned}
$$

There is, however, a nuance that begs clarification Recall that in (normal) APAL, we quantify over PAL, which is equivalent to EL
Does it really matter over which fragment (EL, ELC, PAL, PALC) we quantify in APALC?
Recall that even though CK can 'look' far ahead, there is always a formula with EL that can 'look' at the same distance

EL versus ELC

What do you think about EL versus ELC?

One direction. $\mathscr{E} \mathscr{L} \subseteq \mathscr{E} \mathscr{L} \mathscr{C}$: ELC subsumes EL

The other direction. $\mathscr{E} \mathscr{L} \mathscr{C} \subseteq \mathscr{E} \mathscr{L} \mathscr{L}$?
Consider formula $C_{\{a, b\}} \neg p$

EL versus ELC

The other direction. $\mathscr{E} \mathscr{L} \mathscr{C} \subseteq \mathscr{E} \mathscr{L} \mathscr{L} ?$

Consider formula $C_{\{a, b\}} \neg p$

Assume that there is an equivalent $\psi \in \mathscr{E} \mathscr{L}$
Since ψ is finite, it has some finite modal depth n
M

N

In which model is $C_{\{a, b\}} \neg p$ true?

EL versus ELC

The other direction. $\mathscr{E} \mathscr{L} \mathscr{C} \subseteq \mathscr{E} \mathscr{L} \mathscr{L} ?$
Consider formula $C_{\{a, b\}} \neg p$
Assume that there is an equivalent $\psi \in \mathscr{E} \mathscr{L}$
Since ψ is finite, it has some finite modal depth n

Cannot find the difference with an EL formula!

EL versus ELC

Theorem. ELC is strictly more expressive than EL

Corollary. ELC is strictly more expressive than PAL

What about PALC? Do we gain anything compared to ELC?
Theorem. PALC is strictly more expressive than ELC

Proof intuition. Public announcements can remove states 'far away', and this difference can be reached by CK and not always by standard knowledge (finite modal depth)

The EL Landscape

$E L=P A L$

 Sooooo....Which fragment we quantify over in APALC may matter

On the one hand, expressivity of EL, ELC, and PALC is different

On the other hand, maybe quantifying over formulas of arbitrary modal depth negates the power of common knowledge

PALC

The EL Landscape

APALs with Common Knowledge
 $$
\text { APALC }=\text { PALC }+[!] \varphi
$$

$$
M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi
$$

$$
\mathbf{A P A L C}{ }^{X}=\operatorname{PALC}+[!]^{X} \varphi
$$

$$
M, s \vDash[!]^{X} \varphi \text { iff } \forall \psi \in \mathscr{E} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
$$

$$
\text { APALC }{ }^{X X}=\mathbf{P A L C}+[!]^{X X} \varphi
$$

$$
M, s \vDash[!]^{X X} \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
$$

APALC versus APALC ${ }^{X}$

$$
\text { APALC }=\text { PALC }+[!] \varphi
$$

$$
M, s \vDash[!] \varphi \text { iff } \forall \psi \in \mathscr{P} \mathscr{A} \mathscr{L}: M, s \vDash[\psi] \varphi
$$

$$
\operatorname{APALC}{ }^{X}=\operatorname{PALC}+[!]^{X} \varphi
$$

$$
M, s \vDash[!]^{X} \varphi \text { iff } \forall \psi \in \mathscr{E} \mathscr{L} \mathscr{C}: M, s \vDash[\psi] \varphi
$$

Are there two (classes of) models that APALC ${ }^{X}$ can distinguish but APALC cannot?

What is the difference in the models that we are looking for?
What should be the same in the models?

How I Think

APALC ${ }^{X}$

APALC

Part that should not be - able to distinguish our models

Part that makes the distinction

How I Think

APALC ${ }^{X}$

APALC

PALC

How I Think

APALC ${ }^{X}$

APALC

PALC ELC

Part that should not be - able to distinguish our models

Part that makes the distinction

How I Think

APALC ${ }^{X}$

APALC

PALC

 ELCEL
Part that should not be - able to distinguish our models

Part that makes the distinction

How I Think

APALC ${ }^{X}$

APALC

Part that should not be

PALC
ELC
EL

Announcing ELC

Announcing EL

How I Think

APALC ${ }^{X}$

APALC

PALC
ELC
EL
Models should be the
same on EL and ELC formulas

Announcing ELC

Announcing EL

How I Think

APALC ${ }^{X}$
APALC

PALC

ELC
EL

Announcing EL and ELC formulas should distinguish our models

Announcing ELC

Announcing EL

How I Think

APALC ${ }^{X}$
 APALC

PALC

ELC

EL

The sameness part
We want EL-non-distinguishable models that are not bisimilar

What happens with EL announcements on the models?
M

N

How I Think

APALC ${ }^{X}$

APALC

PALC

ELC
EL

The sameness part
We want EL-non-distinguishable models that are not bisimilar

What happens with EL announcements on the models?
M
N

How I Think

APALC ${ }^{X}$

APALC

PALC

ELC

EL

The difference part
We can assume that q that does not appear explicitly
q helps us to distinguish finite and the infinite chains
M
N

APALC versus APALC ${ }^{X}$

We can combine all these intuitions (and a little bit more) to provide a bisimulaiton-based argument

Theorem. The are (classes of) models that APALC ${ }^{X}$ can distinguish and APALC cannot

The other direction is even more interesting: does greater scope of quantification in APALC X translate into greater expressivity?

Theorem. The are (classes of) models that APALC can distinguish and APALC ${ }^{X}$ cannot

Quantifier $[!]^{X}$ sometimes is too powerful to notice a difference

X versus $X X$

What about APALC ${ }^{X X}$?

X versus $X X$

What about APALC $^{X X}$? I don't know!

APALC landscape

Overview of APALC

> Axioms of EL and PAL
> $[!] \varphi \rightarrow[\psi] \varphi$ with $\psi \in \mathscr{L}$
> From $\{\eta([\psi] \varphi) \mid \psi \in \mathscr{L}\}$ infer $\eta([!] \varphi)$
> $C_{G} \varphi \rightarrow E_{G}^{n} \varphi$ with $n \in \mathbb{N}$
> From $\left\{\eta\left(E_{G}^{n} \varphi\right) \mid n \in \mathbb{N}\right\}$ infer $\eta\left(C_{G} \varphi\right)$

Open Problem. Expressivity of APALC ${ }^{X X}$

Variants.
APALC: $\mathscr{P} \mathscr{A} \mathscr{L},[!] \varphi$ APALC ${ }^{X}: \mathscr{E} \mathscr{L} \mathscr{C},[!]^{X} \varphi$ APALC $^{X X}: \mathscr{P} \mathscr{A} \mathscr{L} \mathscr{C},[!]^{X X} \varphi$

Theorem. APALCs are more expressive than APAL

Theorem. APALC and APALC ${ }^{X}$ are incomparable

Alternative Open Problem

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Recurring Tiling Problem

Given a finite set of colours C, a tile is a function $\tau:\{$ north, south, east, west $\} \rightarrow C$

Given a finite set of tiles T, a tiling problem is the problem to determine whether T can tile the plane

Given a special tile τ^{*}, a recurring tiling problem is the problem to determine whether T can tile the plane such that τ^{*} appears infinitely often in the first column

Recurring Tiling Problem

Can these tiles tile the plane such that \square appears infinitely often in the first column?

Recurring Tiling Problem

Encoding a Tiling

Encoding a Tiling

Encoding a Tiling

Encoding a Tiling

$\psi_{\text {tile }}$ encodes the representation of a single tile
adj_tiles requires that adjoining tiles agree on colour
init forces the existence of a tile at position $(0,0)$
$\psi_{x \& y}$ guarantees that making a move does not lead to different tiles
tile_left forces the special tile to appear only in the leftmost column
right \& up $:=[!]\left(\bigotimes_{r i g h t} \searrow_{u p}\right.$ centre $\rightarrow \square_{u p} \square_{r i g h t}$ centre $)$

Encoding a Tiling

$\psi_{\text {tile }}$ encodes the representation of a single tile
adj_tiles requires that adjoining tiles agree on colour
init forces the existence of a tile at position $(0,0)$
$\psi_{x \& y}$ guarantees that making a move does not lead to different tiles
tile_left forces the special tile to appear only in the leftmost column

$$
\Psi_{T}:=C_{\{h, v, s\}}\left(\psi_{t i l e} \wedge \text { adj_tiles } \wedge \text { init } \wedge \psi_{x \& y} \wedge \text { tile_left }\right)
$$

Encoding a Tiling

$$
\Psi_{T}:=C_{\{h, v, s\}}\left(\psi_{\text {tile }} \wedge \text { adj_tiles } \wedge \text { init } \wedge \psi_{x \& y} \wedge \text { tile_left }\right)
$$

Lemma. If T can tile $\mathbb{N} \times \mathbb{N}$, then Ψ_{T} is satisfiable

Lemma. If Ψ_{T} is satisfiable, then T can tile $\mathbb{N} \times \mathbb{N}$

Encoding the Recurring Tile

$$
\Psi_{T} \wedge C_{\{v, s\}}\left[C_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Encoding the Recurring Tile

$$
\Psi_{T} \wedge C_{\{v, s\}}\left[C_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Encoding the Recurring Tile

$$
\Psi_{T} \wedge C_{\{v, s\}}\left[C_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T}
$$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile $\left(p^{*}\right)$ we no longer have a tiling

Theorem. T can tile $\mathbb{N} \times \mathbb{N}$ with τ^{*} appearing infinitely often in the first column if and only if

$$
\Psi_{T} \wedge C_{\{v, s\}}\left[C_{\{h, s\}} \neg p^{*}\right] \neg \Psi_{T} \text { is satisfiable }
$$

Theorem. Satisfiability of APALC is Σ_{1}^{1}-hard

Corollaries

Theorem. Satisfiability of APALC is Σ_{1}^{1}-hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge? NO!

Corollary. GALC and CALC do not have finitary axiomatisations

Take-home message

- Adding common knowledge to APAL is not trivial
- However, common knowledge can be treated in an infinitary fashion
- Which fragment we quantify over, EL=PAL, ELC, or PALC, matters; increase in expressivity is not linear
- APALC is not finitely axiomatisable

Open Problem. Expressivity of APALC ${ }^{X X}$

