Rustam Galimullin

rustam.galimullin@uib.no University of Bergen, Norway Louwe B. Kuijer

lbkuijer@liverpool.ac.uk University of Liverpool, UK

ESSLL 2023

Language of APALC $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi| C_G \varphi |[\varphi] \varphi |[!] \varphi$

Semantics

$$M, s \models C_G \varphi \text{ iff } \forall n \in \mathbb{N} : M, s \models E_G^n \varphi$$
$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathcal{PALC} : M, s \models [\psi]\varphi$$

We quantify over a quantifier-free fragment

Language of APALC

 $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | C_G \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

 $M, s \models C_G \varphi \text{ iff } \forall n \in \mathbb{N}: M, s \models E_G^n \varphi$ $M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathcal{PALC}: M, s \models [\psi]\varphi$

Axioms of EL and PAL

$$\begin{split} [!]\varphi \to [\psi]\varphi \text{ with } \psi \in \mathscr{PALC} & C_G \varphi \to E_G^n \varphi \text{ with } n \in \mathbb{N} \\ \text{From } \{\eta([\psi]\varphi) | \psi \in \mathscr{PALC}\} & \text{From } \{\eta(E_G^n \varphi) | n \in \mathbb{N}\} \\ & \text{ infer } \eta([!]\varphi) & \text{ infer } \eta(C_G \varphi) \end{split}$$

Announcement part

Language of APALC

 $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | C_G \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

 $M, s \models C_G \varphi \quad \text{iff } \forall n \in \mathbb{N} : M, s \models E_G^n \varphi$ $M, s \models [!]\varphi \quad \text{iff } \forall \psi \in \mathscr{PALC} : M, s \models [\psi]\varphi$

 $\begin{array}{l} \text{Axioms of EL and PAL} \\ [!]\varphi \rightarrow [\psi]\varphi \text{ with } \psi \in \mathscr{PALC} \\ \text{From } \{\eta([\psi]\varphi) | \psi \in \mathscr{PALC}\} \\ \text{infer } \eta([!]\varphi) \end{array} \begin{array}{l} C_G \varphi \rightarrow E_G^n \varphi \text{ with } n \in \mathbb{N} \\ \text{From } \{\eta(E_G^n \varphi) | n \in \mathbb{N}\} \\ \text{infer } \eta([!]\varphi) \end{array} \end{array}$

Common knowledge part

Language of APALC

 $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) | \Box_a \varphi | C_G \varphi | [\varphi] \varphi | [!] \varphi$

Semantics

 $M, s \models C_G \varphi \text{ iff } \forall n \in \mathbb{N}: M, s \models E_G^n \varphi$ $M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathcal{PALC}: M, s \models [\psi]\varphi$

Axioms of EL and PAL

$$\begin{split} [!]\varphi \to [\psi]\varphi \text{ with } \psi \in \mathscr{PALC} \quad C_G \varphi \to E_G^n \varphi \text{ with } n \in \mathbb{N} \\ \text{From } \{\eta([\psi]\varphi) | \psi \in \mathscr{PALC}\} \quad \text{From } \{\eta(E_G^n \varphi) | n \in \mathbb{N}\} \\ & \text{ infer } \eta([!]\varphi) \quad \text{ infer } \eta(C_G \varphi) \end{split}$$

Theorem. APALC is sound and complete

Language of APALC $\mathscr{APALC} \ni \varphi ::= p |\neg \varphi| (\varphi \land \varphi) |\Box_a \varphi| C_G \varphi |[\varphi] \varphi |[!] \varphi$

Semantics

$$M, s \models C_G \varphi \text{ iff } \forall n \in \mathbb{N} : M, s \models E_G^n \varphi$$
$$M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PALC} : M, s \models [\psi]\varphi$$

There is, however, a nuance that begs clarification

Recall that in (normal) APAL, we quantify over PAL, which is equivalent to EL

Does it really matter over which fragment (EL, ELC, PAL, PALC) we quantify in APALC?

Recall that even though CK can 'look' far ahead, there is always a formula with EL that can 'look' at the same distance

EL versus ELC

What do you think about EL versus ELC?

One direction. $\mathscr{EL} \subseteq \mathscr{ELC}$: ELC subsumes EL

The other direction. $\mathscr{ELC} \subseteq \mathscr{ELL}$?

Consider formula $C_{\{a,b\}} \neg p$

In which model is $C_{\{a,b\}} \neg p$ true?

Cannot find the difference with an EL formula!

EL versus ELC

Theorem. ELC is strictly more expressive than EL

Corollary. ELC is strictly more expressive than PAL

What about PALC? Do we gain anything compared to ELC?

Theorem. PALC is strictly more expressive than ELC

Proof intuition. Public announcements can remove states 'far away', and this difference can be reached by CK and not always by standard knowledge (finite modal depth)

The EL Landscape

Sooooo....

Which fragment we quantify over in APALC may matter

On the one hand, expressivity of EL, ELC, and PALC is different

ELC

EL = PAL

On the other hand, maybe quantifying over formulas of arbitrary modal depth negates the power of common knowledge

PALC

The EL Landscape

APALs with Common
KnowledgeAPALC = PALC + $[!]\varphi$ $M, s \models [!]\varphi$ iff $\forall \psi \in \mathcal{PAL} : M, s \models [\psi]\varphi$

 $\begin{aligned} \mathbf{APALC}^{X} &= \mathbf{PALC} + [!]^{X} \varphi \\ M, s \models [!]^{X} \varphi \text{ iff } \forall \psi \in \mathscr{CC} : M, s \models [\psi] \varphi \\ \end{aligned}$ $\begin{aligned} \mathbf{APALC}^{XX} &= \mathbf{PALC} + [!]^{XX} \varphi \end{aligned}$

 $M, s \models [!]^{XX} \varphi \text{ iff } \forall \psi \in \mathscr{PALC} : M, s \models [\psi] \varphi$

APALC versus APALC^X

APALC = PALC + $[!]\varphi$

 $M, s \models [!]\varphi \text{ iff } \forall \psi \in \mathscr{PAL} : M, s \models [\psi]\varphi$

APALC^X = **PALC** + $[!]^X \varphi$ $M, s \models [!]^X \varphi$ iff $\forall \psi \in \mathscr{ELC} : M, s \models [\psi] \varphi$

Are there two (classes of) models that $APALC^X$ can distinguish but APALC cannot?

What is the difference in the models that we are looking for?

What should be the same in the models?

Announcing EL and ELC formulas should distinguish our models

Announcing ELC

Announcing EL

The sameness part

We want EL-non-distinguishable models that are not bisimilar

What happens with EL announcements on the models?

N

M

The sameness part

We want EL-non-distinguishable models that are not bisimilar

What happens with EL announcements on the models?

N

Announcing ELC

How I Think

Announcing EL

The difference part

We can assume that *q* that does not appear explicitly

 \boldsymbol{q} helps us to distinguish finite and the infinite chains

APALC versus APALC^X

We can combine all these intuitions (and a little bit more) to provide a bisimulaiton-based argument

Theorem. The are (classes of) models that APALC^X can distinguish and APALC cannot

The other direction is even more interesting: does greater scope of quantification in APALC^X translate into greater expressivity?

Theorem. The are (classes of) models that APALC can distinguish and APALC^X cannot

Quantifier $[!]^X$ sometimes is too powerful to notice a difference

X versus XX

What about APALC^{XX}?

X versus XX

What about APALC^{XX}? I don't know!

APALC landscape

Overview of APALC

Axioms of EL and PAL $\begin{aligned} [!]\varphi \to [\psi]\varphi \text{ with } \psi \in \mathscr{L} \\ \text{From } \{\eta([\psi]\varphi) | \psi \in \mathscr{L} \} \\ & \text{ infer } \eta([!]\varphi) \\ C_G \varphi \to E_G^n \varphi \text{ with } n \in \mathbb{N} \\ \text{From } \{\eta(E_G^n \varphi) | n \in \mathbb{N} \} \\ & \text{ infer } \eta(C_G \varphi) \end{aligned}$ Variants. APALC: $\mathcal{PAL}, [!]\varphi$ APALC^X: $\mathcal{ELC}, [!]^X\varphi$ APALC^{XX}: $\mathcal{PALC}, [!]^{XX}\varphi$

Theorem. APALCs are more expressive than APAL

Open Problem. Expressivity of APALC^{XX}

Theorem. APALC and APALC^X are incomparable

Alternative Open Problem

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge?

Recurring Tiling Problem

Given a finite set of colours C, a tile is a function $\tau : \{ \text{north}, \text{south}, \text{east}, \text{west} \} \rightarrow C$ Given a finite set of tiles T, a tiling problem is the problem to determine whether T can tile the plane

Given a special tile τ^* , a recurring tiling problem is the problem to determine whether *T* can tile the plane such that τ^* appears infinitely often in the first column

Recurring Tiling Problem

Recurring Tiling Problem

Encoding a Tiling

 ψ_{tile} encodes the representation of a single tile adj_tiles requires that adjoining tiles agree on colour *init* forces the existence of a tile at position (0,0) $\psi_{x\&y}$ guarantees that making a move does not lead to different tiles $tile_left$ forces the special tile to appear only in the leftmost column

right & *up* := [!]($\Diamond_{right} \Diamond_{up} \text{centre} \rightarrow \Box_{up} \Box_{right} \text{centre})$

Encoding a Tiling

 ψ_{tile} encodes the representation of a single tile adj_tiles requires that adjoining tiles agree on colour *init* forces the existence of a tile at position (0,0) $\psi_{x\&y}$ guarantees that making a move does not lead to different tiles $tile_left$ forces the special tile to appear only in the leftmost column

$$\Psi_T := C_{\{h,v,s\}}(\psi_{tile} \wedge adj_tiles \wedge init \wedge \psi_{x\&y} \wedge tile_left)$$

Encoding a Tiling

 $\Psi_T := C_{\{h,v,s\}}(\psi_{tile} \wedge adj_tiles \wedge init \wedge \psi_{x\&y} \wedge tile_left)$

Lemma. If *T* can tile $\mathbb{N} \times \mathbb{N}$, then Ψ_T is satisfiable

Lemma. If Ψ_T is satisfiable, then T can tile $\mathbb{N} \times \mathbb{N}$

Encoding the Recurring Tile $\Psi_T \wedge C_{\{v,s\}}[C_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p**) we no longer have a tiling

Encoding the Recurring Tile $\Psi_T \wedge C_{\{v,s\}}[C_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p**) we no longer have a tiling

Encoding the Recurring Tile $\Psi_T \wedge C_{\{\nu,s\}}[C_{\{h,s\}} \neg p^*] \neg \Psi_T$

T can tile $\mathbb{N} \times \mathbb{N}$ and after removing all rows with the special tile (*p*^{*}) we no longer have a tiling

Theorem. *T* can tile $\mathbb{N} \times \mathbb{N}$ with τ^* appearing infinitely often in the first column if and only if $\Psi_T \wedge C_{\{v,s\}}[C_{\{h,s\}} \neg p^*] \neg \Psi_T$ is satisfiable

Theorem. Satisfiability of APALC is Σ_1^1 -hard

Harel. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and fairness, 1986.

Corollaries

Theorem. Satisfiability of APALC is Σ_1^1 -hard

Corollary. The set of valid formulas of APALC is neither RE nor co-RE

Open Problem*. Is there a finitary axiomatisation of APAL with common knowledge? **NO!**

Corollary. GALC and CALC do not have finitary axiomatisations

RG and LBK. Satisfiability of APAL with Common Knowledge is Σ_1^1 -hard, 2023.

Take-home message

- Adding common knowledge to APAL is not trivial
- However, common knowledge can be treated in an infinitary fashion
- Which fragment we quantify over, EL=PAL, ELC, or PALC, matters; increase in expressivity is not linear
- APALC is not finitely axiomatisable

Open Problem. Expressivity of APALC^{XX}