Quantification in Dynamic Epistemic Logic Day 1

Rustam Galimullin & Louwe B. Kuijer

ESSLLI 2023

Hi.

Rustam Galimullin & Louwe B. Kuijer

This course

- Welcome to the "Quantification in Dynamic Epistemic Logic" course.
- I am Louwe Kuijer.
- I will be teaching this course together with Rustam Galimullin.

Table of Contents

Overview

2 Introduction

- Information Change Done Systematically
- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- 9 Conclusion

Overview

Course overview

- 5 days, 1 lecture each.
 - Day 1: Non-quantified DEL.
 - Day 2: APAL and friends.
 - Day 3: GAL and CAL.
 - Day 4: Group knowledge.
 - Day 5: AAML and AAUML.
- See course website for more details.
 - (Linked from Discord and ESSLLI course catalogue.)

Further reading

- Most of this course is based directly on research papers (as opposed to textbooks and handbooks).
- As a result: not a lot of easy reading on this topic.
- Website does provide list of papers for further reading.
- But: expect those to be highly detailed and technical.

Exercises

- We have written some exercises that you can do to test yourself.
- They are, of course, completely optional.
- Solutions will not be published or discussed during the lectures.
- If you want to discuss the exercises: talk to us before or after the lecture.

Table of Contents

Overview

- Information Change Done Systematically
- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- 9 Conclusion

Epistemic logic

- Our starting point: epistemic logic (EL).
- Used to represent the information state of one or more agents at a specific point in time.

Epistemic logic: language

Definition

The language of epistemic logic (EL) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{a} \varphi$$

where $a \in A$ and $p \in P$.

Epistemic logic: language

Definition

The language of epistemic logic (EL) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{a} \varphi$$

where $a \in A$ and $p \in P$.

• As usual: $\land, \rightarrow, \leftrightarrow$ as abbreviations. Also: \Diamond as dual of \Box .

Epistemic logic: language

Definition

The language of epistemic logic (EL) is given by

 $\varphi ::= \pmb{p} \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{\pmb{a}} \varphi$

where $a \in A$ and $p \in P$.

- As usual: $\land, \rightarrow, \leftrightarrow$ as abbreviations. Also: \Diamond as dual of \Box .
- $\Box_a \varphi$ read as "agent *a* knows that φ (is true)".
- $\Diamond_a \varphi$ read as "agent *a* considers it possible that φ (is true)".

Epistemic logic: models

Definition

A model of epistemic logic is a triple $M = (S, \{R_a\}_{a \in A}, V)$ where

- S is a set of states (also called worlds),
- for each $a \in A$, $R_a \subseteq S \times S$ is an accessibility relations and
- $V: P \rightarrow 2^S$ is a valuation function.

Epistemic logic: models

Definition

A model of epistemic logic is a triple $M = (S, \{R_a\}_{a \in A}, V)$ where

- S is a set of states (also called worlds),
- for each $a \in A$, $R_a \subseteq S \times S$ is an accessibility relations and
- $V: P \rightarrow 2^S$ is a valuation function.

Note: in general, no reflexivity/transitivity/symmetry assumptions on R_a .

Epistemic logic: models

Definition

A model of epistemic logic is a triple $M = (S, \{R_a\}_{a \in A}, V)$ where

- S is a set of states (also called worlds),
- for each $a \in A$, $R_a \subseteq S \times S$ is an accessibility relations and
- $V: P \rightarrow 2^S$ is a valuation function.

Note: in general, no reflexivity/transitivity/symmetry assumptions on R_a . When we do assume that the relation is an equivalence, write \sim_a for R_a .

Epistemic logic: semantics

Semantics are as usual.

Epistemic logic: semantics

Semantics are as usual.

Definition

The *satisfaction relation* \models is given by

$$\begin{array}{lll} M,s \models p & \Leftrightarrow & s \in V(p), \\ M,s \models \neg \varphi & \Leftrightarrow & M,s \not\models \varphi, \\ M,s \models \varphi \lor \psi & \Leftrightarrow & M,s \models \varphi \text{ or } M,s \models \psi, \\ M,s \models \Box_a \varphi & \Leftrightarrow & \forall s' \in S: \text{ if } (s,s') \in R_a \text{ then } M,s' \models \varphi. \end{array}$$

Example: cards (simple)

Situation:

- Agents: Rustam (r) and Louwe (I).
- Two cards from standard deck of playing cards, placed face down on table.
- We only care about whether the cards are red or black.

Example: cards (simple)

Situation:

- Agents: Rustam (r) and Louwe (I).
- Two cards from standard deck of playing cards, placed face down on table.
- We only care about whether the cards are red or black.

Example: cards (simple)

Situation:

- Agents: Rustam (r) and Louwe (I).
- Two cards from standard deck of playing cards, placed face down on table.
- We only care about whether the cards are red or black.

Information change

• Interesting thing about knowledge and information: they tend to change over time.

Information change

- Interesting thing about knowledge and information: they tend to change over time.
- Model represents specific information state.

Information change

- Interesting thing about knowledge and information: they tend to change over time.
- Model represents specific information state.
- Information change therefore requires model change.

Situation:

• Card distribution as before.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.
- Set of worlds.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.
- Set of worlds.
- Arrows for Rustam.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.
- Set of worlds.
- Arrows for Rustam.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.
- Set of worlds.
- Arrows for Rustam.
- Arrows for Louwe.

- Card distribution as before.
- Now: I look at the first card, without showing it to Rustam.
- Set of worlds.
- Arrows for Rustam.
- Arrows for Louwe.

Getting to the point

• Oy, Louwe! Those examples are insultingly simple, why did you show them to us?

Getting to the point

- Oy, Louwe! Those examples are insultingly simple, why did you show them to us?
- Answer: while they are simple, there is a point to them.

Getting to the point

- Oy, Louwe! Those examples are insultingly simple, why did you show them to us?
- Answer: while they are simple, there is a point to them.
- Note that we *can* reason about information change using EL as opposed to DEL. (We just did.)
- But: it's relatively hard.

Reasoning about information change: EL vs. DEL

EL Ad-hoc Analyze twice Lots of effort Meta-logical

Table of Contents

Overview

2 Introduction

Information Change Done Systematically

- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- Onclusion

Model transformers

- Suppose we want to do information change in a systematic way.
- How would we do this?
Model transformers

- Suppose we want to do information change in a systematic way.
- How would we do this?
- Take information changing event *e*.
- Effect of e is to change information state,

Model transformers

- Suppose we want to do information change in a systematic way.
- How would we do this?
- Take information changing event *e*.
- Effect of e is to change information state,
- Information state = pointed Kripke model.
- Initial model M_s turns into model $M * e_s$.

19/71

Model transformers

- Suppose we want to do information change in a systematic way.
- How would we do this?
- Take information changing event e.
- Effect of e is to change information state,
- Information state = pointed Kripke model.
- Initial model M_s turns into model $M * e_s$.
- In other words: *e* is a function that transforms models.

Updates as functions

- $\bullet\,$ Let ${\mathfrak M}$ be the class of pointed models.
- Event *e* is a function $e: \mathfrak{M} \to \mathfrak{M}$.

Updates as functions

- $\bullet\,$ Let ${\mathfrak M}$ be the class of pointed models.
- Event *e* is a function $e: \mathfrak{M} \to \mathfrak{M}$.
- (Actually: partial function.)

• Left to do: define the behaviour of function *e*.

- Left to do: define the behaviour of function *e*.
- Admittedly not a minor task.

- Left to do: define the behaviour of function *e*.
- Admittedly not a minor task.
- First choice: what part of the model should e change?

- Left to do: define the behaviour of function e.
- Admittedly not a minor task.
- First choice: what part of the model should e change?
- M = (S, R, V).

- Left to do: define the behaviour of function e.
- Admittedly not a minor task.
- First choice: what part of the model should e change?
- M = (S, R, V).
- Option 1: event changes S: public announcement.

- Left to do: define the behaviour of function e.
- Admittedly not a minor task.
- First choice: what part of the model should e change?
- M = (S, R, V).
- Option 1: event changes S: public announcement.
- Option 2: event changes R_a: arrow updates.

- Left to do: define the behaviour of function e.
- Admittedly not a minor task.
- First choice: what part of the model should e change?
- M = (S, R, V).
- Option 1: event changes S: public announcement.
- Option 2: event changes R_a: arrow updates.
- Option 3: event changes V: substitutions.

21 / 71

- Left to do: define the behaviour of function e.
- Admittedly not a minor task.
- First choice: what part of the model should e change?
- M = (S, R, V).
- Option 1: event changes S: public announcement.
- Option 2: event changes R_a : arrow updates.
- Option 3: event changes V: substitutions.
- Option 4: all of the above: action models, arrow update models. (Discussed later this week.)

Simplifying vs. "complexifying"

- Public announcements, arrow updates and substitution reduce, or at least do not increase, the complexity of a model.
- Action models and arrow update models do increase complexity.
- We start by considering the three simplifying update types.

Table of Contents

Overview

2 Introduction

Information Change Done Systematically

Public announcements

- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- 9 Conclusion

Public announcements

• Public announcements change a model by restricting the set of worlds.

Public announcements

- Public announcements change a model by restricting the set of worlds.
- Not just any restriction, though: must be definable.

24 / 71

Public announcements

- Public announcements change a model by restricting the set of worlds.
- Not just any restriction, though: must be definable.
- Specifically: announcement ψ restricts S to $S \cap \llbracket \psi \rrbracket_M$.

Definition

Let M = (S, R, V) be a model and ψ a formula. Then $M * \psi = (S * \psi, R * \psi, V * \psi)$ where

25 / 71

Definition

Let M = (S, R, V) be a model and ψ a formula. Then $M * \psi = (S * \psi, R * \psi, V * \psi)$ where • $S * \psi = \{s \in S \mid M, s \models \psi\},$

Definition

Let M = (S, R, V) be a model and ψ a formula. Then $M * \psi = (S * \psi, R * \psi, V * \psi)$ where

- $S * \psi = \{ s \in S \mid M, s \models \psi \},\$
- $(R * \psi)_a = R_a \cap (S * \psi \times S * \psi),$

Definition

Let M = (S, R, V) be a model and ψ a formula. Then $M * \psi = (S * \psi, R * \psi, V * \psi)$ where

- $S * \psi = \{ s \in S \mid M, s \models \psi \}$,
- $(R * \psi)_a = R_a \cap (S * \psi \times S * \psi),$
- $V * \psi(p) = V(p) \cap S * \psi$.

• Same cards example as before.

- Same cards example as before.
- Now, instead of privately looking at a card, I publicly show that the first card is red.

- Same cards example as before.
- Now, instead of privately looking at a card, I publicly show that the first card is red.
- Announcement: r_1 .

26 / 71

- Same cards example as before.
- Now, instead of privately looking at a card, I publicly show that the first card is red.
- Announcement: *r*₁.

26 / 71

- Same cards example as before.
- Now, instead of privately looking at a card, I publicly show that the first card is red.
- Announcement: r₁.

- Note: so far we have *not* defined Public Announcement Logic.
- No public announcement operator in the language yet!

- Note: so far we have not defined Public Announcement Logic.
- No public announcement operator in the language yet!
- But: we have already defined the function $[\psi]:\mathfrak{M}
 ightarrow\mathfrak{M}.$
- So information change is already systematic.

27 / 71

- Note: so far we have not defined Public Announcement Logic.
- No public announcement operator in the language yet!
- But: we have already defined the function $[\psi]:\mathfrak{M}\to\mathfrak{M}.$
- So information change is already systematic.

EL	Not yet PAL
Ad-hoc	Systematic
Analyze twice	Analyze two things
Lots of effort	Easy(ish)
Meta-logical	Meta-logical

- Note: so far we have not defined Public Announcement Logic.
- No public announcement operator in the language yet!
- But: we have already defined the function $[\psi]:\mathfrak{M}\to\mathfrak{M}.$
- So information change is already systematic.

EL	Not yet PAL
Ad-hoc	Systematic
Analyze twice	Analyze two things
Lots of effort	Easy(ish)
Meta-logical	Meta-logical

• But eventually we do of course want to add announcements to the language.

Public Announcement Logic

Definition

The language of public announcement logic (PAL) is given by

 $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{a} \varphi \mid [\varphi] \varphi$

where $a \in A$ and $p \in P$.

Public Announcement Logic

Definition

The language of public announcement logic (PAL) is given by

 $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{a} \varphi \mid [\varphi] \varphi$

where $a \in A$ and $p \in P$.

• $\langle \varphi \rangle$ as dual of $[\varphi]$.

PAL: semantics

Definition

The *satisfaction relation* \models is extended with

$$egin{aligned} \mathsf{M},\mathsf{s} \models [arphi]\psi & \Leftrightarrow & [arphi](\mathsf{M},\mathsf{s}) \models \psi \end{aligned}$$

PAL: semantics

Definition

The *satisfaction relation* \models is extended with

$$M, s \models [\varphi]\psi \quad \Leftrightarrow \quad ext{if } [\varphi](M, s) ext{ exists then } [\varphi](M, s) \models \psi$$

PAL: semantics

Definition

The *satisfaction relation* \models is extended with

$$M, s \models [arphi] \psi \iff ext{if } [arphi](M, s) ext{ exists then } [arphi](M, s) \models \psi$$

Equivalent to: $M, s \models [arphi] \psi \iff ext{if } M, s \models arphi ext{ then } M * [arphi], s \models \psi$

.
Ways to do information change

EL	Not yet PAL	PAL
Ad-hoc	Systematic	Systematic
Analyze twice	Analyze two things	Analyze two things
Lots of effort	Easy(ish)	Easy(ish)
Meta-logical	Meta-logical	In object language

Table of Contents

- Overview
- 2 Introduction
- Information Change Done Systematically
- 4 Public announcements
- Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- 9 Conclusion

Next up: substitutions

- We have discussed public announcements.
- Arrow updates are more complicated, so we leave them for later.
- First, we discuss substitutions (a.k.a. assignments).

32 / 71

• Public announcements change S^{1} .

• Public announcements change S^{1} .

¹And, in a trivial way, R and V.

- Public announcements change S^{1} .
- Arrow updates change *R*.

¹And, in a trivial way, R and V.

- Public announcements change S^{1} .
- Arrow updates change R.
- Substitutions change V.

¹And, in a trivial way, R and V.

- Public announcements change S^{1} .
- Arrow updates change *R*.
- Substitutions change V.
- This means that substitutions represent factual change instead of information change.

33 / 71

¹And, in a trivial way, R and V.

- Public announcements change S^{1} .
- Arrow updates change R.
- Substitutions change V.
- This means that substitutions represent factual change instead of information change.
- This course is about information change, so we won't say much about substitutions.
- But we do briefly discuss them for the sake of completeness.

¹And, in a trivial way, R and V.

• Substitutions take form $[p_1 := \varphi_1, \cdots, p_n := \varphi_n].$

34 / 71

- Substitutions take form $[p_1 := \varphi_1, \cdots, p_n := \varphi_n]$.
- Effect: atom $V(p_i)$ changes to $\llbracket \varphi_i \rrbracket_M$.

- Substitutions take form $[p_1 := \varphi_1, \cdots, p_n := \varphi_n]$.
- Effect: atom $V(p_i)$ changes to $\llbracket \varphi_i \rrbracket_M$.
- Formally: let $\sigma = [p_1 := \varphi_1, \cdots, p_n := \varphi_n]$. Then $M * \sigma = (S, R, V * \sigma)$ where

$$\mathcal{V} * \sigma(p) = \left\{ egin{array}{cc} \llbracket arphi_i
rbrace_{M} & ext{if } p = p_i \ \mathcal{V}(p) & ext{otherwise} \end{array}
ight.$$

- Substitutions take form $[p_1 := \varphi_1, \cdots, p_n := \varphi_n]$.
- Effect: atom $V(p_i)$ changes to $\llbracket \varphi_i \rrbracket_M$.
- Formally: let $\sigma = [p_1 := \varphi_1, \cdots, p_n := \varphi_n]$. Then $M * \sigma = (S, R, V * \sigma)$ where

$$V*\sigma(p) = \left\{egin{array}{cc} [\![arphi_i]\!]_{\mathcal{M}} & ext{if } p=p_i \ V(p) & ext{otherwise} \end{array}
ight.$$

• Effect is global, i.e., common knowledge.

• Suppose I replace the first card by a black one.

- Suppose I replace the first card by a black one.
- Represented by $[r_1 := \bot]$

35 / 71

- Suppose I replace the first card by a black one.
- Represented by $[r_1 := \bot]$

• Suppose I switch around the two cards.

36 / 71

- Suppose I switch around the two cards.
- Represented by $[r_1 := r_2, r_2 := r_1]$

- Suppose I switch around the two cards.
- Represented by $[r_1 := r_2, r_2 := r_1]$

36 / 71

Substitutions in a logical language

Definition

The language of epistemic logic with factual change (EL+[σ]) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{\mathsf{a}} \varphi \mid [\sigma] \varphi$$

$$\sigma ::= \epsilon \mid \sigma, p := \varphi$$

where $a \in A, p \in P$ and ϵ is the empty sequence.

Substitutions in a logical language

Definition

The language of epistemic logic with factual change (EL+[σ]) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{\mathsf{a}} \varphi \mid [\sigma] \varphi$$

$$\sigma ::= \epsilon \mid \sigma, p := \varphi$$

where $a \in A, p \in P$ and ϵ is the empty sequence.

The *satisfaction relation* \models is extended with

$$M, s \models [\sigma] \varphi \quad \Leftrightarrow \quad [\sigma](M, s) \models \varphi$$

Substitutions in a logical language

Definition

The language of epistemic logic with factual change (EL+[σ]) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{\mathsf{a}} \varphi \mid [\sigma] \varphi$$

$$\sigma ::= \epsilon \mid \sigma, p := \varphi$$

where $a \in A, p \in P$ and ϵ is the empty sequence.

The *satisfaction relation* \models is extended with

$$M, s \models [\sigma] \varphi \quad \Leftrightarrow \quad [\sigma](M, s) \models \varphi$$

where $[\sigma](M, s) = M * [\sigma], s$.

Systematic

- Note: as with PAL, we do not need substitutions in the language to do factual change systematically.
- But having them in the language still helps, by allowing in-logic reasoning.

Table of Contents

- Overview
- 2 Introduction
- Information Change Done Systematically
- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
 - 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- 9 Conclusion

• Finally, we arrive at arrow updates.

- Finally, we arrive at arrow updates.
- I personally really like them.

- Finally, we arrive at arrow updates.
- I personally really like them.
- But I must admit: they are rather complicated.

- Finally, we arrive at arrow updates.
- I personally really like them.
- But I must admit: they are rather complicated.
- So before looking at the details: brief high level overview.

• An information changing event is a public announcement if the following conditions are satisfied:

- An information changing event is a public announcement if the following conditions are satisfied:
 - Information is gained, not lost.
 - All agents gain the same information.
 - O These three conditions are common knowledge.

- An information changing event is a public announcement if the following conditions are satisfied:
 - Information is gained, not lost.
 - All agents gain the same information.
 - These three conditions are common knowledge.
- Arrow updates relax the 2nd condition: agents may gain different information.
- As a result: not common knowledge what information is gained.

- An information changing event is a public announcement if the following conditions are satisfied:
 - Information is gained, not lost.
 - All agents gain the same information.
 - These three conditions are common knowledge.
- Arrow updates relax the 2nd condition: agents may gain different information.
- As a result: not common knowledge what information is gained.
- But: still required to be common knowledge what information is gained under what circumstances.

Arrow updates: example

- We already saw an example of an arrow update earlier.
- Recall: example of me looking at the first card.

Arrow updates: example

- We already saw an example of an arrow update earlier.
- Recall: example of me looking at the first card.
- Not all agents gain the same information (Rustam does not see the card, I do).
Arrow updates: example

- We already saw an example of an arrow update earlier.
- Recall: example of me looking at the first card.
- Not all agents gain the same information (Rustam does not see the card, I do).
- But Rustam does know the conditions for my information gain: if the card is read I will learn r_1 , if it is black I will learn $\neg r_1$.

42 / 71

Arrow updates: example

- We already saw an example of an arrow update earlier.
- Recall: example of me looking at the first card.
- Not all agents gain the same information (Rustam does not see the card, I do).
- But Rustam does know the conditions for my information gain: if the card is read I will learn r_1 , if it is black I will learn $\neg r_1$.
- Hence this is an arrow update.

Arrow updates: syntax

- An arrow update must specify what an agent will learn under what conditions.
- So three parts: condition, agent and information learned.

Arrow updates: syntax

- An arrow update must specify what an agent will learn under what conditions.
- So three parts: condition, agent and information learned.
- Left to decide: specify information learned as (i) what remains possible or (ii) what becomes impossible.
- With public announcements, we specify what remains possible ([φ] means φ worlds remain).

Arrow updates: syntax

- An arrow update must specify what an agent will learn under what conditions.
- So three parts: condition, agent and information learned.
- Left to decide: specify information learned as (i) what remains possible or (ii) what becomes impossible.
- With public announcements, we specify what remains possible ([φ] means φ worlds remain).
- We follow that convention for arrow updates.

- Clauses of the form: $\varphi \stackrel{a}{\mapsto} \psi$.
- Meaning: if φ is true, then from a's point of view ψ remains possible.

- Clauses of the form: $\varphi \stackrel{a}{\mapsto} \psi$.
- Meaning: if φ is true, then from a's point of view ψ remains possible.
- Semantically: $\varphi \stackrel{a}{\mapsto} \psi$ means that *a*-arrow from φ world to ψ world is retained.

- Clauses of the form: $\varphi \stackrel{a}{\mapsto} \psi$.
- Meaning: if φ is true, then from a's point of view ψ remains possible.
- Semantically: $\varphi \stackrel{a}{\mapsto} \psi$ means that *a*-arrow from φ world to ψ world is retained.
- Arrow update consists of set of such clauses.

44 / 71

- Clauses of the form: $\varphi \stackrel{a}{\mapsto} \psi$.
- Meaning: if φ is true, then from a's point of view ψ remains possible.
- Semantically: $\varphi \stackrel{a}{\mapsto} \psi$ means that *a*-arrow from φ world to ψ world is retained.
- Arrow update consists of set of such clauses.
- Every arrow matching no clause is deleted.

Arrow updates: formally

Definition

The language of arrow update logic (AUL) is given by

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Box_{a}\varphi \mid [U]\varphi$$
$$U ::= \epsilon \mid U, \varphi \stackrel{a}{\mapsto} \psi$$

where $a \in A, p \in P$ and ϵ is the empty sequence.

Arrow updates: semantics

•
$$M * [U] = (W, R * [U], V)$$

• $(s_1, s_2) \in R * [U]_a$ iff $(s_1, s_2) \in R_a$ and
 $\exists (\varphi \stackrel{a}{\mapsto} \psi) \in U : M, s_1 \models \varphi \text{ and } M, s_2 \models \psi.$

Satisfaction relation \models is extended with

•
$$M, s \models [U]\varphi$$
 iff $M * [U], s \models \varphi$.

• Example of me looking at the first card,

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.
- Clause: $\top \xrightarrow{r} \top$.

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.
- Clause: $\top \stackrel{r}{\mapsto} \top$.
- For me: if r_1 is true, then I learn that $\neg r_1$ is false, so r_1 is all that remains possible.

47 / 71

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.
- Clause: $\top \stackrel{r}{\mapsto} \top$.
- For me: if r_1 is true, then I learn that $\neg r_1$ is false, so r_1 is all that remains possible.
- Clause: $r_1 \stackrel{l}{\mapsto} r_1$.

47 / 71

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.
- Clause: $\top \stackrel{r}{\mapsto} \top$.
- For me: if r_1 is true, then I learn that $\neg r_1$ is false, so r_1 is all that remains possible.
- Clause: $r_1 \stackrel{l}{\mapsto} r_1$.
- Similarly: $\neg r_1 \stackrel{l}{\mapsto} \neg r_1$.

- Example of me looking at the first card,
- For Rustam: no change, i.e., in every situation every other situation remains possible.
- Clause: $\top \stackrel{r}{\mapsto} \top$.
- For me: if r_1 is true, then I learn that $\neg r_1$ is false, so r_1 is all that remains possible.
- Clause: $r_1 \stackrel{l}{\mapsto} r_1$.
- Similarly: $\neg r_1 \stackrel{l}{\mapsto} \neg r_1$.
- No further clauses: update U given by $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$

• We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{\top \xrightarrow{r} \top, r_1 \xrightarrow{l} r_1, \neg r_1 \xrightarrow{l} \neg r_1\}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{\top \xrightarrow{r} \top, r_1 \xrightarrow{l} r_1, \neg r_1 \xrightarrow{l} \neg r_1\}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{\prime}{\mapsto} r_1, \neg r_1 \stackrel{\prime}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{\prime}{\mapsto} r_1, \neg r_1 \stackrel{\prime}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

- We just established that $U = \{ \top \stackrel{r}{\mapsto} \top, r_1 \stackrel{l}{\mapsto} r_1, \neg r_1 \stackrel{l}{\mapsto} \neg r_1 \}.$
- We know from before: model on the left should turn into model on the right.
- Let's see why this is so.

Table of Contents

- Reduction axioms, expressivity and decidability

Axiomatization

• In a moment, we'll discuss axiomatizations for DEL.

Axiomatization

- In a moment, we'll discuss axiomatizations for DEL.
- First, however, brief reminder of axiomatization for EL.

50 / 71

Axiomatization

- In a moment, we'll discuss axiomatizations for DEL.
- First, however, brief reminder of axiomatization for EL.
- Well known proof system K:

$$\begin{array}{ll} (\mathsf{Prop}) & \mathsf{Any \ substitution \ instance \ of \ a \ validity \ of \ propositional \ logic} \\ (\mathsf{K}) & \Box(phi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \\ (\mathsf{Necc}) & \mathsf{From} \vdash \varphi, \ \mathsf{infer} \vdash \Box \varphi \\ (\mathsf{MP}) & \mathsf{From} \ \varphi \rightarrow \psi \ \mathsf{and} \ \varphi, \ \mathsf{infer} \ \psi \end{array}$$

Completeness

- Proof in K is a finite, numbered list of formulas.
- Each line in proof is justified by (1) being a premise, (2) an axiom of **K** or (3) applying a rule of **K** to earlier line(s).
Completeness

- Proof in K is a finite, numbered list of formulas.
- Each line in proof is justified by (1) being a premise, (2) an axiom of **K** or (3) applying a rule of **K** to earlier line(s).
- Notation $\Gamma \vdash \varphi$.

Completeness

- Proof in K is a finite, numbered list of formulas.
- Each line in proof is justified by (1) being a premise, (2) an axiom of **K** or (3) applying a rule of **K** to earlier line(s).
- Notation $\Gamma \vdash \varphi$.
- Famously, K is sound and strongly complete.

Completeness

- Proof in K is a finite, numbered list of formulas.
- Each line in proof is justified by (1) being a premise, (2) an axiom of **K** or (3) applying a rule of **K** to earlier line(s).
- Notation $\Gamma \vdash \varphi$.
- Famously, K is sound and strongly complete.
- So, in some sense, all there is to know about basic modal logic.

Predictable

• Public announcements, arrow updates and substitutions change agents' knowledge.

52/71

Predictable

- Public announcements, arrow updates and substitutions change agents' knowledge.
- But: the old situation determines the new one.
- \bullet So it is unsurprising that whether φ holds in the new situation can be predicted from the old one.

Predictable

- Public announcements, arrow updates and substitutions change agents' knowledge.
- But: the old situation determines the new one.
- \bullet So it is unsurprising that whether φ holds in the new situation can be predicted from the old one.
- These predictions can be encoded as axioms.

• The axioms for substitutions are the easiest. So we start with those.

53/71

- The axioms for substitutions are the easiest. So we start with those.
- $[p := \varphi]$ sets value of p to value of φ . Hence $M * [p := \varphi], w \models p$ iff $M, w \models \varphi$.

- The axioms for substitutions are the easiest. So we start with those.
- $[p := \varphi]$ sets value of p to value of φ . Hence $M * [p := \varphi], w \models p$ iff $M, w \models \varphi$.
- Result $\models [p := \varphi] p \leftrightarrow \varphi$.

- The axioms for substitutions are the easiest. So we start with those.
- $[p := \varphi]$ sets value of p to value of φ . Hence $M * [p := \varphi], w \models p$ iff $M, w \models \varphi$.
- Result $\models [p := \varphi] p \leftrightarrow \varphi$.
- If σ doesn't assign a value to p then $\models [\sigma]p \leftrightarrow p$.

• Recall that, in modal logic, $\Box_a \neg \varphi \leftrightarrow \neg \Box_a \varphi$ characterizes *functionality* of accessibility relation.

54 / 71

- Recall that, in modal logic, $\Box_a \neg \varphi \leftrightarrow \neg \Box_a \varphi$ characterizes *functionality* of accessibility relation.
- This is because if there is only one successor, then either all successors satisfy φ or no successors satisfy $\varphi.$

- Recall that, in modal logic, $\Box_a \neg \varphi \leftrightarrow \neg \Box_a \varphi$ characterizes *functionality* of accessibility relation.
- This is because if there is only one successor, then either all successors satisfy φ or no successors satisfy φ .
- The update $[\sigma]$, considered as a model transformer, is also a function.

- Recall that, in modal logic, $\Box_a \neg \varphi \leftrightarrow \neg \Box_a \varphi$ characterizes *functionality* of accessibility relation.
- This is because if there is only one successor, then either all successors satisfy φ or no successors satisfy φ .
- The update $[\sigma]$, considered as a model transformer, is also a function.
- Hence: $\models [\sigma] \neg \varphi \leftrightarrow \neg [\sigma] \varphi$.

- Recall that, in modal logic, $\Box_a \neg \varphi \leftrightarrow \neg \Box_a \varphi$ characterizes *functionality* of accessibility relation.
- This is because if there is only one successor, then either all successors satisfy φ or no successors satisfy $\varphi.$
- The update $[\sigma]$, considered as a model transformer, is also a function.
- Hence: $\models [\sigma] \neg \varphi \leftrightarrow \neg [\sigma] \varphi$.
- Similarly: $\models [\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi).$

• Finally: substitutions are public and do not affect distinguishability of worlds.

55 / 71

- Finally: substitutions are public and do not affect distinguishability of worlds.
- This implies that $\models [\sigma] \Box_{a} \varphi \leftrightarrow \Box_{a} [\sigma] \varphi$.

Putting it all together:

$$\begin{aligned} [\sigma] p \leftrightarrow \varphi \\ [\sigma] p \leftrightarrow p \\ [\sigma] \neg \varphi \leftrightarrow \neg [\sigma] \varphi \\ [\sigma] (\varphi \lor \psi) \leftrightarrow ([\sigma] \varphi \lor [\sigma] \psi) \\ [\sigma] \Box_{a} \varphi \leftrightarrow \Box_{a} [\sigma] \varphi \end{aligned}$$

where $p := \varphi$ in σ where p is not assigned a value in σ

are sound axioms.

$$\begin{aligned} [\sigma] p \leftrightarrow \varphi \\ [\sigma] p \leftrightarrow p \\ [\sigma] \neg \varphi \leftrightarrow \neg [\sigma] \varphi \\ [\sigma] (\varphi \lor \psi) \leftrightarrow ([\sigma] \varphi \lor [\sigma] \psi) \\ [\sigma] \Box_a \varphi \leftrightarrow \Box_a [\sigma] \varphi \end{aligned}$$

where $p := \varphi$ in σ where p is not assigned a value in σ

57 / 71

$$\begin{split} &[\sigma]p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ &[\sigma]p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ &[\sigma]\neg\varphi \leftrightarrow \neg[\sigma]\varphi & \\ &[\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi) \\ &[\sigma]\Box_a\varphi \leftrightarrow \Box_a[\sigma]\varphi & \end{split}$$

 $\begin{array}{ll} [\sigma]p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ [\sigma]p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ [\sigma]\neg\varphi \leftrightarrow \neg[\sigma]\varphi & \\ [\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi) \\ [\sigma]\Box_a\varphi \leftrightarrow \Box_a[\sigma]\varphi \end{array}$

$$\begin{split} &[\sigma]p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ &[\sigma]p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ &[\sigma]\neg\varphi \leftrightarrow \neg[\sigma]\varphi \\ &[\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi) \\ &[\sigma]\Box_a\varphi \leftrightarrow \Box_a[\sigma]\varphi \end{split}$$

$$\begin{split} &[\sigma]p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ &[\sigma]p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ &[\sigma]\neg\varphi \leftrightarrow \neg[\sigma]\varphi & \\ &[\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi) \\ &[\sigma]\Box_a\varphi \leftrightarrow \Box_a[\sigma]\varphi & \end{split}$$

$$\begin{split} &[\sigma]p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ &[\sigma]p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ &[\sigma]\neg\varphi \leftrightarrow \neg[\sigma]\varphi & \\ &[\sigma](\varphi \lor \psi) \leftrightarrow ([\sigma]\varphi \lor [\sigma]\psi) \\ &[\sigma]\Box_a\varphi \leftrightarrow \Box_a[\sigma]\varphi \end{split}$$

$$\begin{split} &[\sigma] p \leftrightarrow \varphi & \text{where } p := \varphi \text{ in } \sigma \\ &[\sigma] p \leftrightarrow p & \text{where } p \text{ is not assigned a value in } \sigma \\ &[\sigma] \neg \varphi \leftrightarrow \neg [\sigma] \varphi \\ &[\sigma] (\varphi \lor \psi) \leftrightarrow ([\sigma] \varphi \lor [\sigma] \psi) \\ &[\sigma] \Box_a \varphi \leftrightarrow \Box_a [\sigma] \varphi \end{split}$$

- Important property: in each axiom right-hand side has less complex formula inside scope of [σ].
- Consequence: every formula with $[\sigma]$ is provably equivalent to one without.

57/71

• Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p$.

• Example: $[\sigma] \Box_b \neg p$.

- Example: $[\sigma] \Box_b \neg p$.
- $\Box_b[\sigma] \neg p$

- Example: $[\sigma] \Box_b \neg p$.
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [\sigma] p$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p.$
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [\sigma] p$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p$.
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [p := [q := \Box_a \neg p](p \lor q)]p$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p$.
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [p := [q := \Box_a \neg p](p \lor q)]p$
- $\Box_b \neg [q := \Box_a \neg p](p \lor q)$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p.$
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [p := [q := \Box_a \neg p](p \lor q)]p$
- $\Box_b \neg [q := \Box_a \neg p](p \lor q)$
- $\Box_b \neg ([q := \Box_a \neg p]p \lor [q := \Box_a \neg p]q)$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p.$
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [p := [q := \Box_a \neg p](p \lor q)]p$
- $\Box_b \neg [q := \Box_a \neg p](p \lor q)$
- $\Box_b \neg ([q := \Box_a \neg p] p \lor [q := \Box_a \neg p] q)$
- $\Box_b \neg (p \lor [q := \Box_a \neg p]q)$

- Example: $[p := [q := \Box_a \neg p](p \lor q)] \Box_b \neg p.$
- $\Box_b[\sigma] \neg p$
- $\Box_b \neg [p := [q := \Box_a \neg p](p \lor q)]p$
- $\Box_b \neg [q := \Box_a \neg p](p \lor q)$
- $\Box_b \neg ([q := \Box_a \neg p]p \lor [q := \Box_a \neg p]q)$
- $\Box_b \neg (p \lor [q := \Box_a \neg p]q)$
- $\Box_b \neg (p \lor \Box_a \neg p)$

The many uses of reduction axioms

Reduction axioms are nice because:
The many uses of reduction axioms

Reduction axioms are nice because:

 "Free" completeness: axiomatization for EL + reduction axioms for [σ] = axiomatization for EL+[σ]. The many uses of reduction axioms

Reduction axioms are nice because:

- "Free" completeness: axiomatization for EL + reduction axioms for [σ] = axiomatization for EL+[σ].
- **2** "Free" expressivity results: $EL+[\sigma]$ formulas are equivalent to EL formulas.

The many uses of reduction axioms

Reduction axioms are nice because:

- "Free" completeness: axiomatization for EL + reduction axioms for [σ] = axiomatization for EL+[σ].
- **2** "Free" expressivity results: $EL+[\sigma]$ formulas are equivalent to EL formulas.
- "Free" decidability: satisfiability of $EL+[\sigma]$ reduces to satisfiability of EL.

- We can do the same for public announcements.
- Small complication: $[\varphi]$ is a partial function. To compensate: add a bunch of $\varphi \to \cdots$ conditions.

- We can do the same for public announcements.
- Small complication: $[\varphi]$ is a partial function. To compensate: add a bunch of $\varphi \to \cdots$ conditions.
- $\bullet \models [\varphi] p \leftrightarrow (\varphi \rightarrow p)$

- We can do the same for public announcements.
- Small complication: $[\varphi]$ is a partial function. To compensate: add a bunch of $\varphi \to \cdots$ conditions.
- $\bullet \models [\varphi] p \leftrightarrow (\varphi \rightarrow p)$
- $\bullet \models [\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi] \psi)$

- We can do the same for public announcements.
- Small complication: $[\varphi]$ is a partial function. To compensate: add a bunch of $\varphi \to \cdots$ conditions.
- $\bullet \models [\varphi] p \leftrightarrow (\varphi \rightarrow p)$
- $\models [\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi] \psi)$
- $\models [\varphi](\psi_1 \lor \psi_2) \leftrightarrow ([\varphi]\psi_1 \lor [\varphi]\psi_2)$

- We can do the same for public announcements.
- Small complication: $[\varphi]$ is a partial function. To compensate: add a bunch of $\varphi \to \cdots$ conditions.
- $\bullet \models [\varphi] p \leftrightarrow (\varphi \rightarrow p)$
- $\models [\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [\varphi] \psi)$
- $\models [\varphi](\psi_1 \lor \psi_2) \leftrightarrow ([\varphi]\psi_1 \lor [\varphi]\psi_2)$
- $\models [\varphi] \Box_{a} \psi \leftrightarrow (\varphi \to \Box_{a} [\varphi] \psi)$

• Most axioms for arrow updates are simpler.

- Most axioms for arrow updates are simpler.
- $\bullet \models [U] p \leftrightarrow p$
- $\bullet \models [U] \neg \varphi \leftrightarrow \neg [U] \varphi$
- $\models [U](\varphi \lor \psi) \leftrightarrow ([U]\varphi \lor [U]\psi)$

- Most axioms for arrow updates are simpler.
- $\bullet \models [U] p \leftrightarrow p$
- $\bullet \models [U] \neg \varphi \leftrightarrow \neg [U] \varphi$
- \models [U]($\varphi \lor \psi$) \leftrightarrow ([U] $\varphi \lor$ [U] ψ)
- Final axioms is more complicated, however.

- Most axioms for arrow updates are simpler.
- $\bullet \models [U] p \leftrightarrow p$
- $\bullet \models [U] \neg \varphi \leftrightarrow \neg [U] \varphi$
- \models [U]($\varphi \lor \psi$) \leftrightarrow ([U] $\varphi \lor$ [U] ψ)
- Final axioms is more complicated, however.
- $\models [U] \square_{a} \varphi \leftrightarrow \bigwedge_{(\psi_{1}, a, \psi_{2}) \in U} (\psi_{1} \rightarrow \square_{a} (\psi_{2} \rightarrow [U] \varphi))$

- Again: these are reduction axioms.
- Therefore, "free" completeness, expressivity, decidability.

- Again: these are reduction axioms.
- Therefore, "free" completeness, expressivity, decidability.
- In particular: note that EL, PAL, AUL and $EL+[\sigma]$ all have the same expressivity.

- Again: these are reduction axioms.
- Therefore, "free" completeness, expressivity, decidability.
- In particular: note that EL, PAL, AUL and $EL+[\sigma]$ all have the same expressivity.
- This is somewhat surprising: PAL, AUL and $EL+[\sigma]$ feel more powerful than EL.

- Again: these are reduction axioms.
- Therefore, "free" completeness, expressivity, decidability.
- In particular: note that EL, PAL, AUL and $EL+[\sigma]$ all have the same expressivity.
- This is somewhat surprising: PAL, AUL and $EL+[\sigma]$ feel more powerful than EL.
- And they are more powerful, in some sense. Just not in expressivity.

Table of Contents

- Overview
- 2 Introduction
- Information Change Done Systematically
- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
 - Conclusion

• In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- I.e., for every formula φ in one language there is an equivalent formula φ' in other language.

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- \bullet I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?
- If $[\sigma], [\varphi], [U]$ don't add expressivity, do they add something fundamentally new?

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- \bullet I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?
- If $[\sigma], [\varphi], [U]$ don't add expressivity, do they add something fundamentally new?
- Three reasons.

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- \bullet I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?
- If $[\sigma], [\varphi], [U]$ don't add expressivity, do they add something fundamentally new?
- Three reasons.
 - **1** Succinctness. The equivalent formula in EL is typically longer.

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?
- If $[\sigma], [\varphi], [U]$ don't add expressivity, do they add something fundamentally new?
- Three reasons.
 - **1** Succinctness. The equivalent formula in EL is typically longer.
 - **2** We can add quantification. (The main point of this course!)

- In previous section we saw: EL, EL+[σ], PAL, AUL all have same expressivity.
- I.e., for every formula φ in one language there is an equivalent formula φ' in other language.
- So why do we bother?
- If $[\sigma], [\varphi], [U]$ don't add expressivity, do they add something fundamentally new?
- Three reasons.
 - **1** Succinctness. The equivalent formula in EL is typically longer.
 - 2 We can add quantification. (The main point of this course!)
 - **③** While they have the same expressivity, their *update expressivity* differs.

Update Expressivity

Expressivity (the normal kind) is about which sets of pointed models can be expressed, i.e., given class X of pointed models, is there a formula φ such that [[φ]] = X?

Update Expressivity

- Expressivity (the normal kind) is about which sets of pointed models can be expressed, i.e., given class X of pointed models, is there a formula φ such that [[φ]] = X?
- Update expressivity is about which model transformers can be expressed.

Update Expressivity

- Expressivity (the normal kind) is about which sets of pointed models can be expressed, i.e., given class X of pointed models, is there a formula φ such that [[φ]] = X?
- Update expressivity is about which model transformers can be expressed.
- Given a function $f: \mathfrak{M} \to \mathfrak{M}$, is there an update e in the language such that $\llbracket e \rrbracket = f$?

First attempt at a definition:

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates.

First attempt at a definition:

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

First attempt at a definition:

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

For every $e_1 \in E_1$ there is an $e_2 \in E_2$ s.t. $e_1 = e_2$.

First attempt at a definition:

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

For every $e_1 \in E_1$ there is an $e_2 \in E_2$ s.t. $e_1 = e_2$.

Problem 1: equality too strong.

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_1 and e_2 are equivalent, denoted $e_1 \sim e_2$ if for all M, w,

Definition

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_1 and e_2 are equivalent, denoted $e_1 \sim e_2$ if for all M, w, the models $e_1(M, w)$ and $e_2(M, w)$ are bisimilar.

Definition

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_1 and e_2 are equivalent, denoted $e_1 \sim e_2$ if for all M, w, the models $e_1(M, w)$ and $e_2(M, w)$ are bisimilar.

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_1 and e_2 are equivalent, denoted $e_1 \sim e_2$ if for all M, w, the models $e_1(M, w)$ and $e_2(M, w)$ are bisimilar.

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

For every $e_1 \in E_1$ there is an $e_2 \in E_2$ such that $e_1 \sim e_2$.
A second attempt

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_1 and e_2 are equivalent, denoted $e_1 \sim e_2$ if for all M, w, the models $e_1(M, w)$ and $e_2(M, w)$ are bisimilar.

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 if:

For every $e_1 \in E_1$ there is an $e_2 \in E_2$ such that $e_1 \sim e_2$.

Problem 2: public announcements are partial functions, not functions.

67 / 71

Definition

Let $e_1: \mathfrak{M} \to \mathfrak{M}$ and $e_2: \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_2 dominates e_1 , denoted $e_1 \rightsquigarrow e_2$ if for all M, w,

Definition

68 / 71

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_2 dominates e_1 , denoted $e_1 \rightsquigarrow e_2$ if for all M, w, if $e_1(M, w)$ exists, then $e_2(M, w)$ exists and the two pointed models are bisimilar.

Definition

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_2 dominates e_1 , denoted $e_1 \rightsquigarrow e_2$ if for all M, w, if $e_1(M, w)$ exists, then $e_2(M, w)$ exists and the two pointed models are bisimilar.

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 , denoted $\mathcal{L}_1 \preceq \mathcal{L}_2$ if:

Definition

Let $e_1 : \mathfrak{M} \to \mathfrak{M}$ and $e_2 : \mathfrak{M} \to \mathfrak{M}$ be given. We say that e_2 dominates e_1 , denoted $e_1 \rightsquigarrow e_2$ if for all M, w, if $e_1(M, w)$ exists, then $e_2(M, w)$ exists and the two pointed models are bisimilar.

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be languages with associated sets E_1 and E_2 of updates. We say that the *update expressivity* of \mathcal{L}_1 is at least as great as that of \mathcal{L}_2 , denoted $\mathcal{L}_1 \preceq \mathcal{L}_2$ if:

For every $e_1 \in E_1$ there is an $e_2 \in E_2$ such that $e_1 \rightsquigarrow e_2$.

PAL AUL $EL+[\sigma]$

EL

• All three update logics clearly have higher update expressivity than EL.

EL

• All three update logics clearly have higher update expressivity than EL.

- All three update logics clearly have higher update expressivity than EL.
- $EL+[\sigma]$ is incomparable with PAL and AUL.

- All three update logics clearly have higher update expressivity than EL.
- $EL+[\sigma]$ is incomparable with PAL and AUL.
- But: $[\top \xrightarrow{A} \varphi] \rightsquigarrow [\varphi]$, so PAL \preceq AUL.

- All three update logics clearly have higher update expressivity than EL.
- $EL+[\sigma]$ is incomparable with PAL and AUL.
- But: $[\top \xrightarrow{A} \varphi] \rightsquigarrow [\varphi]$, so PAL \preceq AUL.
- \bullet No translation from arrow updates to public announcements. Therefore: PAL \prec AUL.

- All three update logics clearly have higher update expressivity than EL.
- $EL+[\sigma]$ is incomparable with PAL and AUL.
- But: $[\top \xrightarrow{A} \varphi] \rightsquigarrow [\varphi]$, so PAL \preceq AUL.
- \bullet No translation from arrow updates to public announcements. Therefore: PAL \prec AUL.

Table of Contents

- Overview
- 2 Introduction
- Information Change Done Systematically
- 4 Public announcements
- 5 Substitutions
- 6 Arrow Updates
- 7 Reduction axioms, expressivity and decidability
- Opdate Expressivity
- Onclusion

Today's overall message:

• Public announcements, arrow updates and substitutions change S, R and V, respectively.

- Public announcements, arrow updates and substitutions change S, R and V, respectively.
- Updates can be seen both as functions $e:\mathfrak{M}\to\mathfrak{M}$ and as linguistic objects.

- Public announcements, arrow updates and substitutions change S, R and V, respectively.
- Updates can be seen both as functions $e:\mathfrak{M}\to\mathfrak{M}$ and as linguistic objects.
- Existence of reduction axioms shows that EL, EL+[σ], PAL and AUL have same expressivity and are decidable.

- Public announcements, arrow updates and substitutions change S, R and V, respectively.
- Updates can be seen both as functions $e:\mathfrak{M}\to\mathfrak{M}$ and as linguistic objects.
- Existence of reduction axioms shows that EL, EL+[σ], PAL and AUL have same expressivity and are decidable.
- But: the four logics have different update expressivity.