
Dictatorial Dynamic Coalition Logic∗

Rustam Galimullin† Thomas Ågotnes‡

Abstract

Coalition logic (CL) allows one to reason about what a coalition of agents may
bring about no matter what agents outside of the coalition do at the same time.
To study the dynamics of coalitional ability, we enrich CL with model-changing
operators that update coalitional abilities of single agents by either granting the
agents dictatorial powers, or revoking them. We investigate the model checking
problem for the two extensions. Moreover, we compare their expressive power relative
to each other, and situate them in the broader context of the logics for reasoning
about strategic abilities.

1 Introduction

One of the most exciting manifestations of the dynamic turn in logic [8] is dynamic epis-
temic logic (DEL) [11] that encompasses various formalisms for modelling information
change. In particular, DELs capture the dynamics of knowledge by allowing one to reason
about how agents’ knowledge and beliefs change as a result of different types of epistemic
events.

The interplay between knowledge and ability has been in the focus of computer science
and philosophy research for quite a while [3] with notable examples being alternating-time
temporal epistemic logic [17] and epistemic coalition logic [1]. This research, however,
focused mostly on how agents’ knowledge and ignorance affect their choice of available
strategies, and did not capture how those available strategies may change.

In the current paper, we propose a study of the dynamics of ability, where ability-
changing operations are treated as first-class citizens. One may view ability change as an
update of a protocol, contract, or an agreement between agents, that specifies how what
they can and cannot do should be modified. In this regard, we follow the lead of DEL,
where knowledge-changing actions are explicitly expressed in a language.

Apart from a purely philosophical interest of ‘dynamifying’ logics of ability, there is also
a very practical interest. Reasoning about actions and abilities of single agents and groups

∗Extended version of [14].
†University of Bergen, Bergen, Norway; rustam.galimullin@uib.no
‡Southwest University, Chongqing, China, and University of Bergen, Bergen, Norway;

thomas.agotnes@uib.no

1

of agents is ubiquitous in AI. Notable examples are classical and epistemic [9] multi-agent
planning, game theory, software verification, and so on. One of the most recent challenges
is verification of the safety of blockchains, and, in particular, smart contracts [16].

To simplify an example problem from [16], assume that there is a newly-founded com-
pany, and the initial block of the smart contract specifies that the board of directors consists
of Alice, Bob, and Carol, and all financial decisions are made according to the majority
rule. Apart from the board of directors, there are also employees, Dave and Ellen, with
fewer privileges. Now assume that Bob was caught making suspicious transactions and,
according to some financial regulation, they can no longer be on the board. Moreover, to
substitute Bob, Ellen was promoted. The resulting new situation is recorded in the next
block of the blockchain, where it is specified that Bob loses the ability to make financial
decisions, while Ellen obtains such an ability.

Clearly, in the described scenario, it is vital to specify what an agent, or a group thereof,
is able or unable to do. One of the most popular languages for reasoning about abilities of
groups of agents is called coalition logic (CL) [23] (which can be considered as a Next-time
fragment of alternating-time temporal logic (ATL) [4]). CL extends propositional logic
with constructs 〈〈C〉〉ϕ meaning that ‘there is a joint action by agents from coalition C
such that no matter what agents outside of the coalition do, ϕ’.

While CL captures the abilities of agents to force certain outcomes, it provides only a
static snapshot and thus is inadequate for the situations where new policies or regulations
override agents’ abilities. We thus propose the development and study of dynamic coalition
logic, with dynamic operators in the spirit of dynamic epistemic logics1 [11] that can modify
or update the abilities of agents and coalitions. In the current paper we take the first step
and focus on granting and revoking dictatorial powers, i.e. the ability of single agents to
force an outcome.

To model updates of dictatorial powers, we borrow syntax and basic intuition from
arrow update logic (AUL) [18], where constructs U = {(χ1, a1, ψ1), . . . , (χn, an, ψn)} specify
which belief relations should be preserved in a current model. AUL, being a dynamic
epistemic logic [11], models such epistemic events as public and private announcements,
lying, etc. Arrow updates were also used to reason about norms [19].

First, we consider positive dictatorial dynamic coalition logic (DDCL+) that extends CL
with updates +U = {(χ1, a1, ψ1)

+, . . . , (χn, an, ψn)+}. In this case, +U specifies between
which states an agent should be granted the dictatorial power. In particular, (χ, a, ψ)+

means that agent a will be able to force any state where ψ is true, from any state where χ
holds. In terms of models, this means that in the updated model there will be a set of new
arrows satisfying the requirement. In this regard, DDCL+ is slightly reminiscent of bridge
logics [5]. However, in our case, the interpretation of arrows and the mechanism of adding
relations are completely different.

Apart from the logic of granting dictatorial powers, we also study the logic of revoking

1Dynamic epistemic logics with coalitional operators have been studied only in the setting of public
announcements (see [12, 13]). These logics, however, are not strictly coalitional in the sense of [23] since
they are defined on epistemic models, not concurrent game models.

2

such powers, which we call negative dictatorial dynamic coalition logic (DDCL−). The
logic extends CL with updates −U = {(χ1, a1, ψ1)

−, . . . , (χn, an, ψn)−} that, similarly to
the updates of AUL, specify which dictatorial powers should be preserved, while all other
such powers, not satisfying the specification, are removed.

After we recall some background information about CL in Section 2, we present syntax
and semantics of DDCL+ and DDCL− (Section 3). In particular, we argue that updates
+U and −U are not always executable. In Section 4, which is entirely new, we show that
the complexity of the model checking problem is P -complete for both DDCL+ and DDCL−.
This result comes hand in hand with the fact, demonstrated in Section 5, that both logics
are strictly more expressive than CL. Thus, not only there cannot be reduction axioms for
the logics in the fashion of AUL, but also this additional expressivity comes ‘for free’, at
least for the case of model checking. In Section 5, we additionally show that DDCL+ and
DDCL− are incomparable w.r.t. expressive power, and then situate the logics in the wider
context of logics for reasoning about strategic abilities. Finally, we discuss further research
in Section 6.

2 Coalition Logic

As the logics introduced in this paper are dynamic extensions of coalition logic, we first
provide all the necessary background information on it (see [23, 22, 3]). Let P be a
countable set of propositional variables, and A be a finite set of agents.

Definition 2.1. The language of coalition logic CL is given recursively by the following
grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ

where p ∈ P and C ⊆ A. Constructs 〈〈C〉〉ϕ are read ‘coalition C can force ϕ’. We denote
A \ C as C. The dual of 〈〈C〉〉ϕ is [[C]]ϕ := ¬〈〈C〉〉¬ϕ.

Formulas of coalition logic are interpreted on concurrent game models.

Definition 2.2. A concurrent game model (CGM)2, or a model, is a tuple M = (A, S,Act,
act, out, L). A is a non-empty finite set of agents, and the subsets of A are called coalitions.
S is a non-empty set of states, and Act is a non-empty set of actions.

The function act : A× S → 2Act \ ∅ assigns to each agent and each state a non-empty
set of actions. A C-action at a state s ∈ S is a tuple αC such that αC(i) ∈ act(i, s) for all
i ∈ C. The set of all C-actions in s is denoted by act(C, s). We will also write αC1 ∪ αC2

to denote a C1 ∪ C2-action with C1 ∩ C2 = ∅.
A tuple of actions α = 〈α1, . . . , αk〉 with k =| A | is called an action profile. An action

profile is executable in state s if for all i ∈ A, αi ∈ act(i, s). The set of all action profiles

2Note that although in [23] the semantics of CL are given relative to effectivity models, we still can use
CGMs as these types of models are semantically equivalent (see more on this topic in [15]).

3

executable in s is denoted by act(s). An action profile α extends a C-action αC , written
αC v α, if for all i ∈ C, α(i) = αC(i).

The function out assigns to each state s and each α ∈ act(s) a unique output state. We
write Out(s, αC) for {out(s, α) | α ∈ act(s) and αC v α}. Intuitively, Out(s, αC) is the
set of all states reachable by action profiles that extend some given C-action αC . Finally,
L : S → P is the valuation function.

We will also denote a CGM M with a designated, or current, state s as Ms. We call
M finite if S is finite.

Definition 2.3. Let Ms be a pointed CGM. The semantics of CL are defined as follows:

Ms |= p iff s ∈ L(p)
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= 〈〈C〉〉ϕ iff ∃αC ,∀αC : Mt |= ϕ, where t = out(s, αC ∪ αC)
Ms |= [[C]]ϕ iff ∀αC ,∃αC : Mt |= ϕ, where t = out(s, αC ∪ αC)

Informally, the semantics of the coalition modality 〈〈C〉〉ϕ means that in the current
state of a given CGM there is a choice of actions by the members of coalition C such that
no matter what the opponents from the anti-coalition C choose to do at the same time, ϕ
holds after the execution of the corresponding action profile. Given ϕ and M , we define
JϕKM := {s ∈ S |Ms |= ϕ}.

Definition 2.4. We call a formula ϕ valid if for all Ms it holds that Ms |= ϕ.

Definition 2.5. Let M = (A, SM , ActM , actM , outM , LM) and N = (A, SN , ActN , actN ,
outN , LN) be two CGMs. A relation Z ⊆ SM ×SN is called bisimulation if and only if for
all C ⊆ A, s1 ∈ SM and s2 ∈ SN , (s1, s2) ∈ Z implies

• for all p ∈ P , s1 ∈ LM(p) iff s2 ∈ LN(p);

• for all αC ∈ actM(C, s1), there exists βC ∈ actN(C, s2) such that for every s′2 ∈
OutN(s2, βC), there exists s′1 ∈ OutM(s1, αC) such that (s′1, s

′
2) ∈ Z.

• The same as above with 1 and 2 swapped.

If there is a bisimulation between M and M linking states s1 and s2, we call the pointed
models bisimilar (Ms1 � Ns2).

Theorem 1 ([2]). Let M and N be CGMs such that M � N and there is a bisimilation
between s ∈ SM and t ∈ SN . Then for all ϕ ∈ CL, Ms |= ϕ iff Nt |= ϕ.

Before we continue, we define an auxiliary set of forcing actions for each state and
agent. Intuitively, an action is a forcing action if all action profiles it appears in lead to
the same state.

4

Definition 2.6. Let M be a CGM. The set of forcing actions for agent i and state s,
denoted as f(i, s), is defined as follows:

{αi ∈ act(i, s) | ∀α, β ∈ act(s) : (αi v α and αi v β) implies out(α, s) = out(β, s)}

Without loss of generality and to make the following technical presentation clearer, we
assume that each action in the set of forcing actions is labelled with a pair of states it
connects. Thus, elements of f(i, s) are a

(s,t1)
i , b

(s,t2)
i ,

3 Dictatorial Dynamic Coalition Logic

In this section we introduce the ways of granting and revoking dictatorial powers of agents.
We borrow the syntax from arrow update logic [18].

3.1 Granting Dictatorial Powers

Definition 3.1. The language of positive dictatorial dynamic coalition logic DDCL+ is
given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ | [+U]ϕ
+U ::= (ϕ, a, ϕ)+ | (ϕ, a, ϕ)+,+U

where p ∈ P , a ∈ A, and C ⊆ A. Constructs +U are called (positive) updates, and formulas
[+U]ϕ are read as ‘after (positive) update +U , ϕ is true’. We will abuse the notation and
treat the list +U := (ψ1, a1, ϕ1)

+, . . . , (ψn, an, ϕn)+ as the set +U := {(ψ1, a1, ϕ1)
+, . . . ,

(ψn, an, ϕn)+}. The dual of [+U]ϕ is 〈+U〉ϕ := ¬[+U]¬ϕ.

The intended meaning of (ϕ, a, ψ)+ is as follows: in each ϕ-state, in the updated model,
there will be a new action for agent a such that no matter which actions other agents choose,
the target state is a ψ-state. In case of multiple ϕ- and ψ-states, we have a new action for
each pair.

Example 1. Before giving the formal definition of the semantics, let us consider an ex-
ample. In Figure 1, in model M there are three states, s, t, and u, and two agents, a and
b. In s, agent a has three actions, a0, a1, and a2, and she has the ability to decide which
state will be next. Agent b does not have the ability to force anything in the model.

To make the example more relatable, assume that p means that agent a has a cup of
coffee, and q stands for b having coffee. Action a1 signifies agent a pouring coffee just for
herself; if she chooses a2, then she pours coffee for b as well; and actions a0 and b0 are ‘do
nothing’, or ‘enjoy oneself’ actions. It is clear from the figure that in s, where neither a
nor b have coffee, a can choose to either get a cup for herself (transition to state u), or for
both of them (transition to t), or just do nothing (self-loop in s). Agent b, being a polite
guest of a, cannot do anything.

5

s : ¬p,¬q

t : p, q u : p,¬q

M

a2b0 a1b0

a0b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U1

a2b0

a0b1

a1b1

a2b1
a1b0

a0b0

a0b0 a0b0

a0b2

Figure 1: Models M (left) and M+U1
(right), where thick arrows depict new transitions,

and new actions are in bold font.

The set of forcing actions for a in s is f(a, s) = {a(s,s)0 , a
(s,u)
1 , a

(s,t)
2 } and the set of forcing

actions for b in s is empty. In states t and u both a and b have one forcing action each: a
has a0 and b has b0.

Now, let us consider +U1 = {(¬q, b, q)+}. Informally, we want to give agent b the power
to get a cup of coffee whenever she does not have one. The result of updating our model
with +U1 is presented in Figure 1 on the right. In the figure, agent b gains two new actions
(in bold font in the figure): b1 in s, and b2 in u. Then, for each action profile with b1 or b2
there is a transition (depicted by thick arrows) to state t, where q is true. This means that
after the update, agent b has the dictatorial power to force q from any of the states where
q does not hold. Formally, we have, for example, that Ms 6|= 〈〈b〉〉q and Ms |= [+U1]〈〈b〉〉q.
With the update, sets of forcing actions are changed as well. In state s, f(a, s) = {a(s,t)2 }
and f(b, s) = {b(s,t)1 }; in state t both a and b have a

(t,t)
0 and b

(t,t)
0 respectively; in state u,

f(b, u) = {b(u,u)0 , b
(u,t)
2 } and a does not have forcing actions.

As another example, consider +U2 = {(>, b,¬p)+}. We can imagine an informal
reading as agent b gets rid of a’s coffee no matter what, and precludes her from getting one
if she hasn’t got one yet (state s). The update of the initial model is depicted in Figure 2
on the left.

In the updated model, agent a does not have any strategy to escape ¬p, or, formally,
Ms |= [+U2][[a]]¬p. The non-empty sets of forcing actions in the updated model are

the following: f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(b, t) = {b(t,t)0 , b
(t,s)
2 }, and f(b, u) =

{b(u,u)0 , b
(u,s)
3 }.

Before we continue with the definition of the semantics, it should be noted that not
every update can be implemented. For example, in our initial model in Figure 1, we
may require the following update: +U = {(¬q, b, q)+, (¬p, a, p)+}. In this case, we have
a clash of control while assigning a transition from s to t: both a and b should have
the ability to force t. See the model on the right in Figure 2 for a representation of

6

s : ¬p,¬q

t : p, q u : p,¬q

M+U2

a0b1

a1b1

a2b1

a2b0
a0b2

a1b0
a0b3

a0b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U

a2b0
b1

a1b0

a0b0

a0b0 a0b0

b2

a3

a3

Figure 2: Model M+U2
(left) and a tentative updated model M+U (right), where thick

arrows depict new transitions, dashed arrows depict new tentative transitions required by
update +U , and new actions are in bold font. Observe that in M+U both a and b require
dictatorial powers in s.

the problem. To mitigate the problem, we consider only updates that are clash-free, or
executable, throughout the given model.

Definition 3.2. Let M be a CGM, and +U be an update. We call +U executable in M
iff for all (ϕ, i, ψ)+, (χ, j, τ)+ ∈ +U : JϕKM ∩ JχKM = ∅ whenever i 6= j.

Informally, the definition says that an update is executable if it is not granting dicta-
torial powers to different agents in the same state.

Definition 3.3. Let Ms = (A, S,Act, act, out, L) be a CGM. The semantics of DDCL+

extends Definition 2.3 with the following clause for updates:

Ms |= [+U]ϕ iff +U is executable in M implies M+U
s |= ϕ

where M+U = (A, S,Act+U , act+U , out+U , L) is the updated model.
To define M+U = (A, S,Act+U , act+U , out+U , L), we first define the set of new forcing

actions for each agent i in each state s. Let Pairs+U
(ϕ,i,ψ)+ = {s | Ms |= ϕ} × {s | Ms |=

ψ} be all pairs of states between which we need to add transitions according to some

(ϕ, i, ψ)+ ∈ +U . The set of new forcing actions f+U(i, s) consists of actions α
(s,t)
k for each

(s, t) ∈ Pairs+U
(ϕ,i,ψ)+ and all (ϕ, i, ψ)+ ∈ +U , where k starts with |act(i, s)| + 1 and is

increased by 1 for each such (s, t). Intuitively, the set of new forcing actions is constructed
according to +U such that each new action has a unique ordinal number k.

Then Act+U is Act ∪
⋃
i∈A,s∈S f

+U(i, s). Function act+U(i, s) = act(i, s) ∪ f+U(i, s).
Finally,

out+U(α, s) =

{
t, ∃α(s,t)

i v α : α
(s,t)
i ∈ f+U(i, s) for some i ∈ A

out(α, s), otherwise

7

Intuitively, out+U(α, s) takes the system into state t if there is a forcing action of agent i
labelled with (s, t) in action profile α, and works as the original out(α, s) if there are no
new forcing actions in α.

To see that an updated model M+U is indeed a model it is enough to argue that the
function out+U is well-defined. Consider arbitrary state s and action profile α that contains
a new forcing action α

(s,t)
i by an agent i and that is executable in s. Due to the executability

of +U , all new forcing actions in s belong to agent i. Since the updated set of actions
act+U(i, s) of i will contain α

(s,t)
i , the updated set of executable action profiles act+U(s)

will have all possible α such that α
(s,t)
i v α. Finally, according to the definition of out+U ,

for all such α, out+U(α, s) will return exactly state t. Thus, function out+U is total and
deterministic.

As the first step towards the systematic study of DDCL+, we consider some valid and
not valid formulas of the logic. In the proposition below, property 1 states that positive
updates are monotonic operators. That we cannot, in general, unite or commute updates
is captured by items 2 and 3. The intuition behind possible counterexamples is that such
actions may result in updates that are not executable. Properties 4 and 5 claim that
we cannot decompose a single update into a series of consecutive ones, and vice versa.
However, such a decomposition is possible if the starting and target states are specified by
formulas of propositional logic, as claimed by item 63.

Proposition 1. The following holds for formulas of DDCL+.

1. 〈+U〉ϕ ∧ 〈+U〉ψ ↔ 〈+U〉(ϕ ∧ ψ) is valid.

2. 〈+U1〉ϕ ∧ 〈+U2〉ϕ→ 〈+U1 ∪+U2〉ϕ is not valid.

3. 〈+U1〉〈+U2〉ϕ→ 〈+U2〉〈+U1〉ϕ is not valid.

4. 〈(ψ1, a, χ1)
+, (ψ2, b, χ2)

+〉ϕ→ 〈(ψ1, a, χ1)
+〉〈(ψ2, b, χ2)

+〉ϕ is not valid.

5. 〈(ψ1, a, χ1)
+〉〈(ψ2, b, χ2)

+〉ϕ→ 〈(ψ1, a, χ1)
+, (ψ2, b, χ2)

+〉ϕ is not valid.

6. 〈(ψ1, a, χ1)
+, (ψ2, b, χ2)

+〉ϕ → 〈(ψ1, a, χ1)
+〉〈(ψ2, b, χ2)

+〉ϕ, where ψ1, χ1, ψ2, and χ2

are propositional, is valid.

Proof. All the results can be shown by application of the definition of the semantics, or the
intuition that some updates may become not executable if placed after some other update.
Here we provide a brief proof sketch of items 4 and 6.

To see that formula in the item 4 is not valid, take ϕ := ¬〈〈b〉〉χ2 and ψ2 := 〈〈a〉〉χ1.
Now, let M be a CGM such that Ms |= ψ1 ∧¬ψ2 ∧ϕ. Since ¬ψ2 is false in state s, update

3Items 4, 5, and 6 of Proposition 1 hint at possible interaction between DDCL+ and a fragment thereof
with only single-agent updates, where we grant dictatorial powers to one agent at a time. In particular,
such updates are always executable: there is no clash of power if we consider only a single agent per
update. We leave the discussion of the fragment and how it relates to DDCL+ for the future.

8

〈(ψ1, a, χ1)
+, (ψ2, b, χ2)

+〉ϕ will grant dictatorial powers only to agent a in s. Thus, agent
b will still be not able to force χ2 after the update, satisfying ϕ. Next, let us consider
the consecutive updates 〈(ψ1, a, χ1)

+〉〈(ψ2, b, χ2)
+〉ϕ. After the first update, 〈(ψ1, a, χ1)

+〉,
agent a gains the ability to force χ1, and therefore the updated model satisfies ψ2. This
leads to the fact that updating the model with the second update, 〈(ψ2, b, χ2)

+〉, grants
agent b with the power to force χ, which makes ϕ false.

To show that item 4 is not valid, we used the fact that some formulas in updates
may change their truth values as a result of previous updates. Thus, earlier updates may
‘unlock’ later updates. To argue that formula in item 6 is valid, it is enough to notice
that such unlocking is not relevant for propositional formulas as updates do not change
the valuation of propositional variables.

3.2 Revoking Dictatorial Powers

Apart from granting dictatorial powers, another way of updating coalitional abilities is by
revoking such powers. Similarly to DDCL+, we approach this problem from the perspective
of arrow updates.

Definition 3.4. The language of negative dictatorial dynamic coalition logic DDCL− is
given by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ | [−U]ϕ
−U ::= (ϕ, a, ϕ)− | (ϕ, a, ϕ)−,−U

where p ∈ P , a ∈ A, and C ⊆ A. Constructs−U are called (negative) updates, and formulas
[−U]ϕ are read as ‘after (negative) update −U , ϕ is true’. We treat the list −U as the set
−U := {(ψ1, a1, ϕ1)

−, . . . , (ψn, an, ϕn)−}. The dual of [−U]ϕ is 〈−U〉ϕ := ¬[−U]¬ϕ.

The idea behind −U updates is similar to how arrow updates work in AUL [18]: the
list −U specifies which dictatorial powers should be preserved. In other words, for each χ-
state where there are local dictatorial agents forcing a ψ-state, we check whether there is a
corresponding (χ, i, ψ)− in −U for all such agents i. If yes, then we leave the corresponding
arrows as they are; if not, we delete all arrows with the corresponding forcing action.

Example 2. Recall model M+U2
in Figure 2 with the non-empty sets of forcing actions

f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(b, t) = {b(t,t)0 , b
(t,s)
2 }, and f(b, u) = {b(u,u)0 , b

(u,s)
3 }.

Now, assume that the abuse of power by b after update +U2 was not tolerated in the
office, and a new policy was issued specifying that once a has got a coffee, she can enjoy
it in peace. The corresponding update is −U3 = {(p, b, p)−, (¬p, b,¬p)−}, where the first
clause preserves self-loops in states t and u, and the second clause preserves some of the
self-loops in state s. The result of updating M+U2

with −U3 is shown in Figure 3 on the
left.

To obtain the updated model M+U2,−U3
, we check for each state and each action profile

whether it contains a forcing action by an agent. If it does, then we see whether the states

9

the corresponding arrow connects are marked by formulas satisfying one of the elements
of −U3, and whether the forcing action belong to an agent specified by that element of
−U3. If it is the case, we leave the profile as it is, if it is not, we remove the corresponding
arrow.For example, M+U2

had an arrow from p-state t to a ¬p-state s marked with action
profile a0b2, where b2 is a forcing action by b. None of (p, b, p)− and (¬p, b,¬p)− specifies
that such a dictatorial power should be preserved, so in the resulting updated model
M+U2,−U3

the corresponding arrow is removed. The new sets of forcing actions in updated
model M+U2,−U3

are f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)1 }, f(a, t) = {a(t,t)0 }, f(b, t) = {b(t,t)0 },
f(a, u) = {a(u,u)0 }, and f(b, u) = {b(u,u)0 }. Now it holds that M+U2

t |= 〈〈b〉〉¬p ∧ [−U3][[b]]p.

s : ¬p,¬q

t : p, q u : p,¬q

M+U2,−U3

a1b1
a2b1

a2b0 a1b0

a0b0 a0b0

s : ¬p,¬q

t : p, q u : p,¬q

M+U2,−U3,−U4

a2b0 a1b0

Figure 3: Model M+U2,−U3
(left) and a tentative updated model M+U2,−U3,−U4

(right).

Similarly to the case of +U , we need to be careful with −U since we do not want to end
up in a situation, where an agent does not have any actions in some state, or, equivalently,
some state does not have any outgoing arrows. Indeed, consider the further update of the
model from Figure 3 with −U4 = {(p ∧ ¬p, a, p ∧ ¬p)−} meaning that we are required to
revoke all dictatorial powers from all the agents (since none of the states satisfy p ∧ ¬p).
The resulting model would look like the one presented in Figure 3 on the right.

In the resulting tentative model there are no actions in states t and u, hence the
structure in Figure 3 is not a CGM at all. To tackle this issue, we, once again, require a
corresponding condition of executability.

We first specify which forcing actions should be preserved in f(i, s) according to −U in
a given CGM M . Set f−U(i, s) of forcing actions to be preserved is defined as

f−U(i, s) = {α(s,t)
i ∈ f(i, s) | ∃(ϕ, i, ψ)− ∈ −U : Ms |= ϕ and Mt |= ψ}

Intuitively, a forcing action α(s,t) should be preserved if there is a (ϕ, i, ψ)− ∈ −U such
that s satisfies ϕ, and t satisfies ψ.

Definition 3.5. Let M be a CGM, and −U be an update. We call −U executable in M
iff for all i ∈ A and s ∈ S at least one of the following conditions is true:

• |f−U(i, s)| 6= 0, or

10

• ∃αi ∈ act(i, s) : αi 6∈ f(i, s)

In other words, executability of −U means that for all forcing actions, either we have
a clause in −U that allows us to preserve at least one forcing action from a state, or there
are other, non-forcing, actions by the agent in the state. This ensures that agents do not
run out of actions as a result of an update.

Definition 3.6. Let Ms = (A, S,Act, act, out, L) be a CGM. The semantics of DDCL−

extends Definition 2.3 with the following clause for updates:

Ms |= [−U]ϕ iff −U is executable in M implies M−U
s |= ϕ

where M−U = (A, S,Act−U , act−U , out−U , L) is the updated model.
We denote by f−(i, s) the set f(i, s) \ f−U(i, s) of forcing actions of agent i in state s

to be removed from the model. Then function act−U(i, s) = act(i, s) \ f−(i, s), and the
updated set of executable action profiles is act−U(s). Set Act−U is

⋃
i∈A,s∈S act

−U(i, s).

Finally, out−U(α, s) is restricted to those action profiles α that are in act−U(s).
To see that M−U is a model, we argue that out−U is a total function. First, notice that

executability of −U guarantees that for each agent there is at least one action left in each
state. Now, assume to the contrary that for some state s and action profile α executable
in s, the value of out−U(α, s) is not defined. This means that α must contain a forcing

action α
(s,t)
i by an agent i such that α

(s,t)
i ∈ f−(i, s). However, according to the definition

of act−U(i, s), α
(s,t)
i cannot appear within executable action profiles act−U(s). Hence, a

contradiction.

One of the side-effects of considering forcing actions in the setting of ability updates
is that if for a given model there are no forcing actions, then all −U ’s are executable and
none of −U has any effect on the model. This result follows directly from the definition of
the semantics.

Proposition 2. Let M be a CGM such that for all i ∈ A and s ∈ S, f(i, s) = ∅. Then for
any −U and ϕ ∈ DDCL− it holds that Ms |= [−U]ϕ iff Ms |= ϕ.

Similarly to DDCL+, we mention some properties of DDCL−.

Proposition 3. The following holds for formulas of DDCL−.

1. 〈−U〉ϕ ∧ 〈−U〉ψ ↔ 〈−U〉(ϕ ∧ ψ) is valid.

2. 〈−U1〉ϕ ∧ 〈−U2〉ϕ→ 〈−U1 ∪ −U2〉ϕ is not valid.

3. 〈−U1〉〈−U2〉ϕ→ 〈−U2〉〈−U1〉ϕ is not valid.

Property 1 states that negative updates are monotonic, while items 2 and 3 say that in
general we cannot take a union of negative updates or change the order of their application.
The counterexamples can be provided by exploiting the fact that negative updates may
become not executable once united or applied in a different order.

11

4 Model checking

In this section we consider the global model checking problem for both DDCL+ and
DDCL−, and argue that the problem is P -complete in both cases. To achieve the polyno-
mial upper bound, we first prepare the set of subformulas of a given formula similarly to
[19]. After that, we label states of a given finite model to calculate the extension of the
formula. The labelling is inspired by the model checking algorithm for computation tree
logic [10].

4.1 DDCL+

Let a finite model M = (A, S,Act, act, out, L) and a formula ϕ ∈ DDCL+ be given. We
denote by sub(ϕ) the list of subformulas of ϕ . Next, we label each subformula in the
list sub(ϕ) by the sequence of updates inside the scope of which it appears. Finally, we
organise the list in the following way. If ψσ and χτ are subformulas with labellings σ and
τ , then ψσ precedes χτ if

• both ψσ and χτ are subformulas of formulas within updates and σ is a proper prefix
of τ ;

• if ψσ is a subformula of a formula within an update and χτ is not;

• neither ψσ or χτ are subformulas of formulas within updates and τ is a proper prefix
of σ;

• σ = τ and ψσ is a part of χτ ;

• otherwise, ψ appears to the left of χ in ϕ.

All ties in the described procedure are broken arbitrarily, and for simplicity we remove all
identical elements from the resulting list.

Intuitively, we order list sub(ϕ) in such a way that we first have subformulas of formulas
within updates starting with the outermost updates and continuing with inner updates,
and then we have subformulas appearing in the scopes of updates ordered from innermost
to outermost. Such an organisation of list sub(ϕ) ensures that by the time we need to
consider a subformula within the scope of some [+U], we already know what effect [+U]
and all preceding updates have on a model.

As an example, consider formula ϕ := [(q, b,¬q)+][(p, a,¬p)+]〈〈{a, b}〉〉¬p ∧ 〈〈{a, b}〉〉p
with +U1 := (q, b,¬q)+ and +U2 := (p, a,¬p)+. The ordered labelled list sub(ϕ) looks as
follows: q, ¬q, (p)+U

1
, (¬p)+U1

, (p)+U
1,+U2

, (¬p)+U1,+U2
, (〈〈{a, b}〉〉¬p)+U1,+U2

, ([+U2]〈〈{a, b}〉〉¬p)+U1
,

p, [+U1][+U2]〈〈{a, b}〉〉¬p, 〈〈{a, b}〉〉p, ϕ.
In the algorithm below, we will denote by pref (σ) the list of all proper prefixes of σ

ordered by length starting with longest and including the empty prefix. Moreover, function
last(σ) returns the last element of σ.

12

Algorithm 1 An algorithm for global DDCL+ model checking

1: procedure GlobalDDCL+(M,ϕ)
2: for all ψσ ∈ sub(ϕ) do
3: for all s ∈ S do
4: case ψσ = (〈〈C〉〉χ)σ

5: check ← false
6: for all τ ∈ pref (σ) do
7: if check then
8: break
9: else if τ is empty then

10: for all αC ∈ act(C, s) do
11: check ← false
12: for all αA\C ∈ act(A \ C, s) do
13: if out(αC t αA\C , s) is not labelled with χσ then
14: check ← true
15: break
16: if not check then
17: label s with (〈〈C〉〉χ)σ

18: else
19: for all i ∈ A do
20: for all (χτ1 , i, χ

τ
2)+ ∈ last(τ) do

21: if s is labelled with χτ1 then
22: if i ∈ A \ C then
23: for all t ∈ S labelled with χτ2 do
24: if t is not labelled with χσ then
25: check ← true
26: break
27: else
28: for all t ∈ S labelled with χτ2 do
29: if t is labelled with χσ then
30: label s with (〈〈C〉〉χ)σ

31: check ← true
32: break
33: if check then
34: break
35: if check then
36: break
37: case ψσ = ([+U]χ)σ

38: if Executability(+U, σ) is true then
39: if s is labelled with χσ,[+U] then
40: label s with ([+U]χ)σ

41: else
42: label s with ([+U]χ)σ

43: end procedure

13

44: procedure Executability(+U, σ)
45: for all (χσ1 , i, χ

σ
2) ∈ +U do

46: for all (χσ3 , j, χ
σ
4) ∈ +U do

47: if i 6= j then
48: for all s ∈ S do
49: if s is labelled with χσ1 and χσ3 then
50: return false

51: return true
52: end procedure

Algorithm GlobalDDCL+ labels each state of S with subformulas from sub(ϕ). La-
belling proceeds from formulas within updates with a wider scope to formulas within
updates with a smaller scope starting with simpler subformulas and proceeding with more
complex ones. After all subformulas occurring in updates have been processed, the algo-
rithm labels formulas within the scopes of updates.

Labelling of Boolean cases is straightforward and omitted for brevity. Case for coali-
tional modalities (〈〈C〉〉χ)σ is handled in the following way. For a given subformula, we
check the closest update within the scope of which the subformula occurs. In other words,
we check the last element of σ. Then, if the update has a triple (χτ1, i, χ

τ
2) ∈ last(τ) such

that it grants agent i dictatorial powers from some current state, i.e. the current state
is labelled with χτ1, we check whether the agent belongs to the anti-coalition A \ C. If it
does, we check whether the agent can force a non-χ-state. This is due to the fact that even
though dictatorial powers can be granted to an agent outside of C, the agent may still lack
an action to force a non-χ-state. If i ∈ C, then we check whether one of states t labelled
with χτ2 is also labelled with χσ. If yes, then we label s with (〈〈C〉〉χ)σ. Informally, this
means that in order to ensure that (〈〈C〉〉χ)σ holds in the current state, it is enough that
some local dictator from C can force at least one χσ-state.

If the loop does not terminate with τ , we check the next update, with a wider scope,
within which formula 〈〈C〉〉χ occurs. Finally, if none of the updates in σ settle (〈〈C〉〉χ)σ,
i.e. none of the updates influence the abilities of coalition C, we check whether C can force
χ in a usual way. The reason we check updates starting from the innermost is that later
updates may override earlier dictatorial powers.

Finally, the case of ([+U]χ)σ handled according to the semantics with an additional
subroutine checking the executability of +U . The correctness of the algorithm can be
shown by an induction on the formula structure.

Theorem 2. Given a CGM M and a formula ϕ, Ms |= ϕ if and only if GlobalDDCL+

labels s with ϕ.

Preparation of sub(ϕ) can be done in O(|ϕ| × |ϕ|) steps. Procedure GlobalDDCL+

is bounded by O(|ϕ|3× |A| × |S|2) (the case of coalitional modality), and procedure Exe-
cutability is bounded by O(|ϕ|2 × |S|). The lower bound follows from P -completeness
of CL model checking .

Theorem 3. Complexity of DDCL+ model checking problem is P-complete.

14

4.2 DDCL−

Similarly to the case of DDCL+, DDCL− global model checking requires preparation of
the list of subformulas sub(ϕ) of ϕ ∈ DDCL−. The labelling of subformulas follows the
same procedure as in Section 4.1 with the only difference that now we also include update
symbols −U in the list. Moreover, labelled updates (−U)σ will follow immediately after
subformulas of formulas within the update −U . We will use updates to label action profiles
in the algorithm below.

As an example, we consider a formula which is almost identical to ϕ from Section 4.1.
Let the new ϕ be [(q, b,¬q)−][(p, a,¬p)−]〈〈{a, b}〉〉¬p∧〈〈{a, b}〉〉p with−U1 := (q, b,¬q)− and
−U2 := (p, a,¬p)−. The ordered labelled list sub(ϕ) looks as follows: q, ¬q, −U1, (p)−U

1
,

(¬p)−U1
, (−U2)−U

1
,(p)−U

1,−U2
, (¬p)−U1,−U2

, (〈〈{a, b}〉〉¬p)−U1,−U2
, ([−U2]〈〈{a, b}〉〉¬p)−U1

,
p, [−U1][−U2]〈〈{a, b}〉〉¬p, 〈〈{a, b}〉〉p, ϕ.

Algorithm 2 An algorithm for global DDCL− model checking

1: procedure GlobalDDCL−(M,ϕ)
2: prefix ← null
3: for all ψσ ∈ sub(ϕ) do
4: if prefix = null or not prefix = σ then
5: for all i ∈ A do
6: for all s ∈ S do
7: FS(i, s, σ) = ForcingSet(i, s, σ)
8: prefix ← σ

9: for all s ∈ S do
10: case ψσ = −Uσ
11: for all α ∈ act(s) do:
12: check ← true
13: for all αi ∈ α do:
14: if αi ∈ FS(i, s, σ) then
15: check ← false
16: for all (χσ1 , i, χ

σ
2)− ∈ −Uσ do

17: if s is labelled with χσ1 and out(s, α) is labelled with χσ2 and α is
labelled with σ then

18: check ← true
19: break
20: if not check then
21: break
22: if check then
23: label α with σ,−U
24: case ψσ = (〈〈C〉〉χ)σ

25: for all αC ∈ act(C, s) do
26: check ← false
27: for all αA\C ∈ act(A \ C, s) do
28: if αC t αA\C is labelled with σ then

15

29: if out(αC t αA\C , s) is not labelled with χσ then
30: check ← true
31: break
32: if not check then
33: label s with (〈〈C〉〉χ)σ

34: case ψσ = ([−U]χ)σ

35: if Executability(−U, σ) is true then
36: if s is labelled with χσ,[−U] then
37: label s with ([−U]χ)σ

38: else
39: label s with ([−U]χ)σ

40: end procedure
41: procedure ForcingSet(i, s, σ)
42: ρ← ∅
43: for all αi ∈ act(i, s) do
44: check ← false
45: for all αA\i ∈ act(A \ i, s) do
46: if αi t αA\i is labelled with σ then
47: for all βA\i ∈ act(A \ i, s) do
48: if not out(s, αi t αA\i) = out(s, αi t βA\i) then
49: check ← true
50: break
51: if check then
52: break
53: if not check then
54: ρ← ρ ∪ {αi}
55: return ρ
56: end procedure
57: procedure Executability(−U, σ)
58: for all s ∈ S do
59: check ← false
60: for all α ∈ act(s) do
61: if α is labelled with σ,−U then
62: check ← true
63: break
64: if not check then
65: return false

66: return true
67: end procedure

In the global model checking algorithm for DDCL− we omit Boolean cases since they
are as expected. Due to the fact that the set of forcing actions of an agent may change
after an update, we use procedure ForcingSet to calculate forcing sets for all agents and
labels σ. This allows us to know exactly what actions are forcing for a given agent in a

16

given state after some given series of updates. To preclude ForcingSet from running
several times on the same input, we store sets of forcing actions in memory. The required
space is linear and bounded by O(|S| × |Act| × |ϕ|). Time required for computing all
necessary forcing sets is bounded by O(|ϕ| × |A|3 × |S| × |Act|3).

Cases of [−U]σ label action profiles that should be preserved after the sequence of
updates σ,−U . For each action profile we first check whether all forcing actions αi in the
profile satisfy some triple (χ1, i, χ2)

− in the update. If it is the case, we label the action
profile with σ,−U . Following the semantics of negative updates, we also label the action
profile with σ,−U , if it does not contain any forcing actions, and thus is not affected by
the update.

The case of coalitional modality is handled in a usual way with an additional check
that a current action profile is labelled with σ. Such a check ensures that the correspond-
ing transition has been preserved after the sequence of updates σ. Finally, the case of
subformulas of type ([−U]χ)σ follows the semantics. The executability of −U is checked
in procedure Executability(−U, σ) that returns true if for each state there is at least
one action profile labelled with σ,−U meaning that the profile has been preserved after
updates σ,−U . Observe that since subformulas −Uσ come before ([−U]χ)σ, by this time
all qualified action profiles have been labelled with σ,−U .

The algorithm follows closely the semantics of DDCL−, and its correctness can be shown
by the induction on the formula structure.

Theorem 4. Given a CGM M and a formula ϕ, Ms |= ϕ if and only if GlobalDDCL−

labels s with ϕ.

Preparation of sub(ϕ) can be done in O(|ϕ| × |ϕ|) steps. Procedure GlobalDDCL−

is bounded by O(|ϕ|2 × |M |3) for the case −U , and the lower bound follows from P -
completeness of CL model checking.

Theorem 5. Complexity of DDCL− model checking problem is P-complete.

5 Expressivity

In this section we explore the expressivity of dictatorial dynamic coalition logic. First, we
show that both the positive and the negative versions are strictly more expressive than
CL, and then we demonstrate that the two dynamic extensions of CL are incomparable
relative to each other. After that, we situate DDCLs in the wider context of logics for
strategic reasoning, and show that DDCLs stand quite apart from them by proving the
corresponding incomparability results.

5.1 How DDCLs are related to CL and to each other

Definition 5.1. Let ϕ and ψ be formulas. We say that they are equivalent if for all Ms it
holds that Ms |= ϕ iff Ms |= ψ.

17

Definition 5.2. Let L1 and L2 be two languages. We say that L1 is at least as expressive
as L2 (L2 6 L1) if and only if for all ϕ ∈ L2 there is an equivalent ψ ∈ L1. If L1 is not
at least as expressive as L2, we write L2 66 L1. If L2 6 L1 and L1 66 L2, we write L2 < L1

and say that L1 is strictly more expressive than L2. Finally, if L1 66 L2 and L2 66 L1, we
say that L1 and L2 are incomparable.

We first show that both logics, DDCL+ and DDCL−, are strictly more expressive than
CL, and thus, in contrast to the situation with AUL [18], positive and negative updates
cannot be eliminated.

Proposition 4. CL < DDCL+ and CL < DDCL−.

Proof. The fact that both DDCL+ and DDCL− are at least as expressive as CL follows
from the fact that CL ⊆ DDCL+ and CL ⊆ DDCL−.

For DDCL+ 66 CL, consider models Ms and Ns in Figure 4. There is only one agent a
with the only available action a0. It is immediate that Ms and Ns are bisimilar and thus
cannot be distinguished by any formula of CL. At the same time, 〈(p, a,¬p)+〉〈〈a〉〉¬p is
true in Ns (with the resulting updated model N+U

s) and false in Ms (as there are no states
where ¬p would hold).

s : p

M

a0

s : p t : ¬p
N

a0 a0

s : p t : ¬p
N+U

a0 a0

a1

Figure 4: Models, from left to right, Ms, Ns, and N+U
s . New actions are in bold font.

In order to show that DDCL− 66 CL, we will use a technical trick that some −U ’s are
not executable in some models. Consider 〈(p, a, p)−〉〈〈a〉〉p ∈ DDCL−, and assume towards
a contradiction that there is an equivalent ψ ∈ CL with |ψ| = n.

s : p

a0, a1

M

s : p s1 : p . . . sn−1 : p sn : ¬p

a0 a0 a0 a0

a1 a1 a1 a1

N

Figure 5: Models Ms (left) and Ns (right).

Consider models Ms and Ns in Figure 5. The former has only one state with a loop, and
the latter is a chain of length n+1 with ¬p being the case only at the farthest state from s.
Although M and N are not bisimilar, it is clear from the construction of the models that
both of them satisfy the same ψ up to modal depth n: there is simply not enough modal
depth to witness a difference. On the other hand, Ms |= 〈(p, a, p)−〉〈〈a〉〉p (all the forcing
actions remain intact), and Ns 6|= 〈(p, a, p)−〉〈〈a〉〉p. Indeed, since the update requires us to
remove all forcing actions that do not conform to (p, a, p)−, we have to remove the loop at

18

the last state sn, which results in sn being without any actions, and thus the whole update
is not executable in Ns.

Another non-obvious question is whether DDCL+ and DDCL− are different. We show
that it is indeed the case, and, in particular, that the logics are incomparable.

Theorem 6. DDCL− 66 DDCL+.

Proof. Consider models Ms and Ns in Figure 6. Observe that they are bisimilar, and
thus satisfy the same formulas of CL. Moreover, it can be argued that the models also
satisfy the same formulas of DDCL+. Indeed, we can reason by induction that adding a
forcing transition in one model, adds an equivalent forcing transition in the other model.
Intuitively, some +U is executable in one model if and only if it is executable in the other
model, and no new forcing arrow can take us to a non-bisimilar state.

s : p t : p

M

a0b0 a0b0

s : p t : p

N

a0b0 a0b0a1b0

a1b0

Figure 6: Models Ms (left) and Ns (right).

Updates−U depend, on the other hand, on the sets of forcing actions. ForM , the sets of
forcing actions are f(a, s) = {a(s,s)0 }, f(b, s) = {b(s,s)0 }, f(a, t) = {a(t,t)0 }, and f(b, t) = {b(t,t)0 }.
The thing to notice here is that both agents have forcing actions in both states. For
model N , the non-empty sets of forcing actions are f(a, s) = {a(s,s)0 , a

(s,t)
1 } and f(a, t) =

{a(t,t)0 , a
(t,s)
1 }. Since there are no forcing actions for agent b, we can exploit it with −U ’s.

In particular, consider 〈(p, a, p)−〉p, which intuitively orders to preserve only a’s forcing
actions. It is easy to see that 〈(p, a, p)−〉 is not executable in Ms, and hence Ms 6|=
〈(p, a, p)−〉p. At the same time Ns |= 〈(p, a, p)−〉p, since updating Nt with 〈(p, a, p)−〉
leaves the model intact.

Theorem 7. DDCL+ 66 DDCL−.

Proof. Consider models Ms and Ns in Figure 7. Observe that model N is actually a disjoint
union of two models. Moreover, Ms and Ns are bisimilar.

The models are constructed in such a manner that the sets of forcing actions in all
states for all agents of both models are empty. Hence, given an arbitrary formula ϕ of
DDCL− we can use Proposition 2 to get a translation t(ϕ) into an equivalent formula CL.
Finally, since Ms and Ns agree on formulas of CL we can conclude that they also agree on
all formulas of DDCL− .

Now consider 〈(p, a,¬p)+〉〈〈a〉〉¬p ∈ DDCL+. Since there are no states that satisfy ¬p
in M , updating the model with 〈(p, a,¬p)+〉, which is executable in M , yields exactly the
same model. Because there are no ¬p-states, we have Ms 6|= 〈(p, a,¬p)+〉〈〈a〉〉¬p.

19

s : p t : p

M

a0b1
a1b0

a0b1
a1b0

a0b0
a1b1

a0b0
a1b1

s : p t : p

u : ¬p v : ¬p

N , N+U

a0b1
a1b0

a0b1
a1b0

a0b0
a1b1

a0b0
a1b1

a2b0
a2b1 a3b0

a3b1

a4b0
a4b1a5b0

a5b1

Figure 7: Models Ms (on the left), Ns (on the right minus thick transitions), and N+U
s

(including thick transitions). Transitions between states s and t in models N and N+U are
exactly like in M , and thus some labels are omitted for readability.

On the other hand, there are states satisfying ¬p in N , and the update of N with
〈(p, a,¬p)+〉 is shown in Figure 7 on the right including thick transitions. It is clear that
N+U
s |= 〈〈a〉〉¬p, and hence Ns |= 〈(p, a,¬p)+〉〈〈a〉〉¬p.

5.2 How DDCLs are related to other logics for reasoning about
strategic abilities

Coalition logic is not the only formalism for reasoning about strategic abilities on con-
current game models. Other notable examples of such logics include ATL, ATL∗ [4], and
strategy logic [21]. Before presenting the expressivity results, we provide a very concise
overview of the logics; the reader can find further details in the cited literature.

ATL. The language of alternating-time temporal logic [4] extends the language of CL
with temporal operators Xϕ for ‘ϕ is true in the next moment’, Gϕ for ‘ϕ is alway true’,
and ψUϕ for ‘ψ is true until ϕ’.

Definition 5.3. The AT L is defined recursively as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉Xϕ | 〈〈C〉〉Gϕ | 〈〈C〉〉ϕUϕ

Observe that in AT L, temporal operators are in the immediate scope of the coalition
modality.

Before we provide the semantics of the logic, we need some additional definitions.

20

Definition 5.4. A memoryless strategy for agent i in model M is a function stri : S → Act
such that stri(s) ∈ act(i, s). A memoryless strategy for coalition C, denoted strC is a tuple
of memoryless strategies for each i ∈ C.

Definition 5.5. Given a CGM M , a play λ is an infinite sequence of states in S such that
for all i ≥ 0, state si+1 is a successor of si. We will denote the i’th element of play λ as
λ[i]. The set of all plays that can be realised by coalition C following strategy strC from
some given state s, denoted by Plays(s, strC), is defined as

{λ | λ[0] = s and λ[i+ 1] ∈ Out(λ[i], strC(λ[i])) for all i ∈ N}.

Definition 5.6. Let Ms be a CGM. The semantics of ATL (omitting Boolean cases) is
defined as follows:

Ms |= 〈〈C〉〉Xϕ iff ∃αC : Mt |= ϕ for all t ∈ Out(s, αC)
Ms |= 〈〈C〉〉Gϕ iff ∃strC ,∀λ ∈ Plays(s, strC) : Mλ[i] |= ϕ for all i ≥ 0
Ms |= 〈〈C〉〉ψUϕ iff ∃strC ,∀λ ∈ Plays(s, strC),∃i ≥ 0 :

Mλ[i] |= ϕ, and Mλ[j] |= ψ for all 0 ≤ j < i

It is immediate that 〈〈C〉〉Xϕ in ATL is equivalent to 〈〈C〉〉ϕ in CL.

ATL∗. In ATL, temporal operators appear immediately within the scope of a coalitional
modality. Relaxing this condition results in a generalisation of ATL that is called ATL∗.

Definition 5.7. The language of AT L∗ is defined by the following BNF:
State formulas ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈C〉〉ϕ
Path formulas ψ ::= ϕ | ¬ψ | (ψ ∧ ψ) | Xψ | Gψ | ψUψ

ATL∗, in contrast to ATL, allows agents to have strategies that take into account the
entire history of a play.

Definition 5.8. Let λ be a play. We call a finite segment λ[0, i] a history h. Given a
model M with the set of states S, we denote by S+ the set of all histories. A perfect recall
strategy for agent i in model M is a function str+i : S+ → Act such that stri(h) ∈ act(i, s)
and s is the last element of h. A perfect recall strategy for coalition C, denoted strC is a
tuple of perfect recall strategies for each i ∈ C.

Finally, the set of all plays that can be realised by coalition C following strategy str+C
from some given state s, denoted by Plays+(s, str+C), is defined as

{λ | λ[0] = s and λ[i+ 1] ∈ Out(λ[0, i], str+C (λ[0, i])) for all i ∈ N}.

The semantics of ATL∗ are defined by the mutual induction on state and path formulas,
and in the definition below we omit Boolean cases.

Definition 5.9. Let Ms be a CGM. The semantics of ATL∗ is as follows:

Ms |= 〈〈C〉〉ϕ iff ∃str+C : Mλ |= ϕ for all λ ∈ Plays+(s, str+C)
Mλ |= ϕ iff Mλ[0] |= ϕ, for all state formulas ϕ
Mλ |= Xψ iff Mλ[1,∞) |= ψ
Mλ |= Gψ iff Mλ[i,∞) |= ψ for all i ≥ 0
Mλ |= ψUϕ iff ∃i ≥ 0 : Mλ[i,∞) |= ϕ, and Mλ[j,∞) |= ψ for all 0 ≤ j < i

21

Strategy logic. In all logics considered so far in the paper, strategies of agents are
implicit. Although the semantics of strategy logic (SL) [21] is defined on CGMs, the
syntax of the logic has explicit strategy quantifiers: 〈〈x〉〉 meaning ‘there is a strategy
x’ and [[x]] meaning ‘for all strategies x’. Moreover, to associate strategy variables with
particular agents, there is a binding operator (a, x) that means ‘bind agent a to the strategy
associated with x’.

Definition 5.10. The language of SL is defined recursively by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ

Having variables in a language leads to the necessity of plethora of additional definitions
regarding variable assignments and variables being free. We omit these details, and instead
provide the semantics of SL only on intuitive level. Sacrificing preciseness for brevity will
not, however, backfire, since the result of this section do not require the full machinery of
SL. The interested reader is referred to [21, 20] for more details.

Let us consider the truth condition of the existential strategy quantifier. Having a
model Ms and assignment µ of variables and agents to perfect recall strategies, Mµ

s |=
〈〈x〉〉ϕ holds if and only if there is a strategy str+ from the set of all strategies such that

M
µ[x 7→str+]
s |= ϕ, where µ[x 7→ str+] means that variable x has been assigned strategy str+.

Similarly, Mµ
s |= [[x]]ϕ if and only if for all strategies str+ it holds that M

µ[x 7→str+]
s |= ϕ.

Finally, binding (a, x)ϕ assigns to agent a the strategy assigned to variable x. In symbols,

Mµ
s |= (a, x)ϕ if and only if M

µ[a7→µ(x)]
s |= ϕ.

Having direct access to strategies in the language leads to high expressivity. Indeed,
in SL one can express that two agents share the same strategy, or that one agent changes
their strategy during a play. In particular, any formula with a coalition modality can be
expressed in SL. For example, in the case of A = {a, b, c, d} and formula 〈〈{a, b}〉〉ϕ, an
equivalent SL formula would be 〈〈xa〉〉〈〈xb〉〉[[xc]][[xd]](a, xa)(b, xb)(c, xc)(d, xd)ϕ.

Expressivity. Not only are ATL, ATL∗, and SL interesting logics on CGMs, each next
one of them is strictly more expressive than the previous one. In particular, CL < AT L <
AT L∗ < SL. Below we show that even though DDCLs are strictly more expressive than
CL, they stand quite apart from their strategic cousins. Formally, we claim that both
DDCLs are incomparable with any of ATL, ATL∗, and SL.

Theorem 8. DDCL+ 66 AT L, DDCL+ 66 AT L∗, DDCL+ 66 SL, DDCL− 66 AT L,
DDCL− 66 AT L∗, and DDCL− 66 SL

Proof. For the case of DDCL+, recall models Ms and Ns in Figure 4. As claimed in the
proof of Proposition 4, the models are distinguished by a DDCL+ formula. However,
without invoking the notion of bisimilarity, it is clear that none of the strategic logics can
‘jump’ from s to t in model N , and thus spot the difference between Ms and Ns.

To get the results for DDCL−, we recall models Ms and Ns in Figure 6. That the
models can be distinguished by a DDCL− formula is shown in the proof of Proposition 6.

22

Again, it is clear that none of the strategic logics can tell Ms from Ns due to the fact that
p is true everywhere, and agents can only force a transition to some p-state.

To prove the other direction, it is enough to show that there is an ATL formula that
can distinguish two models that are not distinguishable by neither of DDCLs. Results for
ATL∗ and SL will follow trivially as they are strictly more expressive than ATL.

Theorem 9. AT L 66 DDCL+.

Proof. Consider an ATL formula 〈〈{a}〉〉pUq, and assume that there is an equivalent DDCL+

formula ϕ of size |ϕ|. Now consider modelM in Figure 8. The model is an almost symmetric
chain of length 2 · |ϕ|+ 4. In M , state sn+1 satisfies neither p nor q, and state sn+2 satisfies
only q.

s : p s1 : p . . . sn−1 : p sn : p sn+1

sn+2 : q

a1 a1 a1 a1 a1

a1 a1M

t : p t1 : p . . . tn−1 : p tn : p
a1 a1 a1 a1 a1

Figure 8: Models M . If a state does not satisfy a propositional variable, we do not list
that variable next to the state.

Observe that in Mt agent a can maintain p until the agent finally reaches the state
satisfying q. On the other hand, the same is impossible if the agent starts in Ms due to
the fact that in order to reach the state satisfying q, the agent has to pass through sn+1,
where both p and q are false, and there is no way to avoid sn+1. Thus, Ms 6|= 〈〈{a}〉〉pUq
and Mt |= 〈〈{a}〉〉pUq.

To argue that ϕ cannot distinguish the pointed models, we first note that states sn+1

and sn+2 lie more than |ϕ| steps away from both s and t. Thus there is not enough modal
depth to witness the difference using just coalitional modalities.

Second, notice that if a positive update allows us to reach a state satisfying some ψ
from the s-side of the model, then the same update will allow us to reach the same state
from the t-side of the model, and vice versa. This is guaranteed by the fact that models Ms

and Mt are n-bisimilar. As an example, consider state tn. This is the only state satisfying
p∧ 〈〈{a}〉〉q, and thus it could be used to distinguish s- and t-sides of the model. However,
notice that tn cannot be reached via coalitional modalities as Ms and Nt are n-bisimilar.
State tn can be reached, though, if we use some positive update to create a transition from
some current state to tn. In this case, there will also be a transition from a ‘mirror state’ on
the other side of the model, since after i steps in evaluating ϕ we are still in n− i-bisimilar
states. Therefore, Ms |= ϕ if and only if Mt |= ϕ.

Theorem 10. AT L 66 DDCL−.

23

Proof. Consider an ATL formula 〈〈{a, b}〉〉pUq, and assume that there is an equivalent
DDCL− formula ϕ of size |ϕ|. Now consider model Ms in Figure 7 and model Ns in Figure
9. Notice that model N is a chain of length |ϕ|+ 1 with the rightmost state being the only
one where p does not hold.

s : p s1 : p . . . sn−1 : p sn : q

a0b1
a1b0

a0b1
a1b0

a0b1
a1b0

a0b1
a1b0a0b0

a1b1

a0b0
a1b1

a0b0
a1b1

a0b0
a1b1

a0b0
a1b1

N

Figure 9: Model Ns.

It is immediate that Ms 6|= 〈〈{a, b}〉〉pUq, since there is no q-state in the model, and
Ns |= 〈〈{a, b}〉〉pUq. As for ϕ, it is enough to notice that the models are constructed in such
a way that there are no forcing actions for any agent in any state. Thus, by Proposition 2,
negative updates do not affect the models. Moreover, since the length of N is |ϕ|+ 1 there
is not enough modal depth in |ϕ| to witness a difference between the models. Therefore,
Ms |= ϕ and Ns |= ϕ.

The overall expressivity landscape of DDCLs and other logics for reasoning about strate-
gic abilities is depicted in Figure 10.

DDCL+ DDCL−

AT L∗

SL

AT L

CL

Figure 10: The relative expressivity of the logics. An arrow from L1 to L2 means that
L1 6 L2. If there is no symmetric arrow, then L1 < L2. The arrow relation is transitive.
An arrow from L1 to L2 is crossed-out if L1 66 L2. Dashed arrows represent previously
known results.

24

6 Conclusion

We made a first step in exploring the dynamics of ability by presenting two dynamic exten-
sions of CL. The first extension, DDCL+, deals with granting dictatorial powers to single
agents. The second extension, DDCL−, reasons about revoking dictatorial powers. We
showed that both formalisms are strictly more expressive than CL, mutually incompara-
ble, and have P -complete model checking problems. We also considered both DDCLs in
the context of other logics of strategic ability, namely ATL, ATL?, and SL.

Since this work is an initial exposition of dynamic coalition logic, there is a plethora of
open questions and further research directions. For example, it is not clear how to combine
granting and revoking dictatorial powers together in the same update. Apart from that,
the next natural step is reasoning about granting powers to coalitions, rather than to single
agents, i.e. we will consider (χ,C, ψ)+ and (χ,C, ψ)− in the future. The challenge here is
that while we may want to grant a coalition some forcing power, we may also want that
none of the members of the coalition has such a power on their own.

Another exciting avenue of further research is is providing sound and complete axioma-
tisations of the logics. However, it seems particularly difficult as axiomatisations of many
well-known relation changing logics are still unknown [5, 6]. Finally, there is also a con-
ceptual subtlety worth exploring. In our definition of forcing actions we called an action
forcing if for all action profiles it appears in, the outcome state is the same. In other words,
forcing actions in our interpretation force single states. This is a reasonable interpretation
of forcing/dictatorship, but it is not the only one. Another possible interpretation of a
forcing action is that the action forces a (not necessarily singleton) set of ϕ-states.

On a more global scale, we would like to ‘dynamify’ CL in the vein of action models of
DEL [7], thus coming up with a general dynamic coalition logic. The same goal can be set
out for finding dynamic extensions of ATL and SL.

References

[1] Thomas Ågotnes and Natasha Alechina. Coalition logic with individual, distributed
and common knowledge. Journal of Logic and Computation, 29(7):1041–1069, 2019.

[2] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time tem-
poral logics with irrevocable strategies. In Dov Samet, editor, Proceedings of the 11th
TARK, pages 15–24, 2007.

[3] Thomas Ågotnes, Valentin Goranko, Wojciech Jamroga, and Michael Wooldridge.
Knowledge and ability. In Hans van Ditmarsch, Joseph Y. Halpern, Wiebe van der
Hoek, and Barteld Kooi, editors, Handbook of Epistemic Logic, pages 543–589. College
Publications, 2015.

[4] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

25

[5] Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Relation-changing modal op-
erators. Logic Journal of the IGPL, 23(4):601–627, 2015.

[6] Guillaume Aucher, Johan van Benthem, and Davide Grossi. Modal logics of sabotage
revisited. Journal of Logic and Computation, 28(2):269–303, 2018.

[7] Alexandru Baltag, Lawrence S. Moss, and S lawomir Solecki. The logic of public
announcements, common knowledge, and private suspicions. In Itzhak Gilboa, editor,
Proceedings of the 7th TARK, pages 43–56. Morgan Kaufmann, 1998.

[8] Johan van Benthem. Logical Dynamics of Information and Interaction. CUP, 2011.

[9] Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single and
multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

[10] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Dexter Kozen, editor, Logics of
Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

[11] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2008.

[12] Rustam Galimullin. Coalition announcements. PhD thesis, University of Nottingham,
UK, 2019.

[13] Rustam Galimullin. Coalition and relativised group announcement logic. Journal of
Logic, Language and Information, 30(3):451–489, 2021.

[14] Rustam Galimullin and Thomas Ågotnes. Dynamic coalition logic: Granting and
revoking dictatorial powers. In Sujata Ghosh and Thomas Icard, editors, Proceedings
of the 8th LORI, volume 13039 of LNCS, pages 88–101. Springer, 2021.

[15] Valentin Goranko and Wojciech Jamroga. Comparing semantics of logics for multi-
agent systems. Synthese, 139(2):241–280, 2004.

[16] Maurice Herlihy and Mark Moir. Blockchains and the logic of accountability: Keynote
address. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings
of the 31st LICS, pages 27–30. ACM, 2016.

[17] Wiebe van der Hoek and Michael J. Wooldridge. Cooperation, knowledge, and
time: Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

[18] Barteld Kooi and Bryan Renne. Arrow update logic. Review of Symbolic Logic,
4(4):536–559, 2011.

26

[19] Louwe B. Kuijer. An arrow-based dynamic logic of norms. In Julian Gutierrez, Fabio
Mogavero, Aniello Murano, and Michael Wooldridge, editors, Proceedings of the 3rd
SR, pages 1–11, 2015.

[20] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning
about strategies: On the model-checking problem. ACM Transactions on Computa-
tional Logic, 15(4):34:1–34:47, 2014.

[21] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies.
In Kamal Lodaya and Meena Mahajan, editors, Proceedings of the 30th FSTTCS,
volume 8 of LIPIcs, pages 133–144. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010.

[22] Marc Pauly. Logic for Social Software. PhD thesis, ILLC, University of Amsterdam,
The Netherlands, 2001.

[23] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12(1):149–166, 2002.

27

