Action Models for Coalition Logic

Rustam Galimullin(®)1(0000-0003—4195-8189] 51,q Thomas Agotnesl’2

! University of Bergen, Bergen, Norway
2 Southwest University, Chongqing, China
{rustam.galimullin, thomas.agotnes}@uib.no

Abstract. In the paper, we study the dynamics of coalitional ability by
proposing an extension of coalition logic (CL). CL allows one to reason
about what a coalition of agents is able to achieve through a joint ac-
tion, no matter what agents outside of the coalition do. The proposed
dynamic extension is inspired by dynamic epistemic logic, and, in partic-
ular, by action models. We call the resulting logic coalition action model
logic (CAML), which, compared to CL, includes additional modalities
for coalitional action models. We investigate the expressivity of CAML,
and provide a complexity characterisation of its model checking problem.

Keywords: Dynamic Coalition Logic - Coalition Logic - Dynamic Epis-
temic Logic - Action Model Logic.

1 Introduction

Coalition logic (CL) [24,23] is one of the most well-known formalisms for rea-
soning about strategic abilities of groups of agents in the presence of opponents.
Modalities {(C))¢ of CL express the fact that ‘there is a joint action by agents
from coalition C' such that no matter what agents outside of the coalition do
at the same time, ¢ will be true’. CL was conceived as a formal language for
strategic games, and constructs ((C))¢ characterise the existence of a winning
strategy for agents in C.

One way to approach models of CL is to view them as protocols or contracts
specifying what agents can and cannot do in different states. In this paper, we
propose an extension of CL, which we call coalition action model logic (CAML),
that includes modalities for updating those models. Such updates are carried out
with respect to action models that are expressed in the language with formulas
[Mg]p meaning ‘after executing action model Mg, ¢ is the case’.

In creating CAML we followed the lead of dynamic epistemic logic (DEL) [12],
and, in particular, of action model logic (AML) [9,12]. Action models in AML
model various epistemic events that can influence agents’ knowledge about facts
of the world and about knowledge of other agents. In a similar vein, coalitional
action models of CAML can influence strategic abilities of coalitions of agents.
On a more general scale, we hope that CAML will be a step towards a study
of dynamic coalition logic (DCL). To make the link between DEL and DCL
even more explicit, we can say that while DEL captures the the dynamics of
knowledge, DCL should be able to capture the dynamics of ability.

2 R. Galimullin and T. Agotnes

CAML is not the first dynamic coalition logic. In [15] the authors proposed
dictatorial dynamic coalition logic (DDCL) that was inspired by arrow update
logic [21] and relation-changing logics [6]. DDCL updates strategic abilities of
single agents by granting them dictatorial powers or revoking such powers. Com-
pared to DDCL, action models of CAML allow for more fine-tuned updates that
may affect more than one agent in various ways. On the other hand, modalities
of CAML neither grant agents new actions they have not had before, nor remove
such actions. Thus, coalitional action models can be viewed as prescriptions of
how protocols or contracts between agents should be modified while taking into
account what agents actually can and cannot do.

The implementation of an action model in CAML is not, however, merely a
restriction (submodel) of the initial model. The action model might prescribe sev-
eral different modifications compatible with the same state in the initial model,
and the resulting updated model might have more states than the initial one.
We capture this by using a definition of a product update very similar to the
one used in AML. Restrictions on transition systems corresponding to policies,
norms, or social laws is far from a new idea [27,28], and logical formalisms for
reasoning about such restrictions have been extensively studied, particularly us-
ing systems based on computation tree logic (CTL) [3]. In [4] a language similar
to CL is used: an expression of the form (C)¢, where C is a coalition and ¢ is a
temporal formula, expresses the fact that if coalition C' complies with the nor-
mative system, then ¢ will be true. Here, formulas are interpreted in the context
of a single, given, restriction on legal actions, and although one can quantify
over different parts of that restriction by varying the coalition C, the resulting
submodel will always be a restriction of the initial model. The conceptual over-
lap notwithstanding, CAML is significantly different: as mentioned earlier, the
updated models, obtained using action models, are not necessarily submodels,
and the underlying models are CL models with joint actions rather than Kripke
models of CTL.

After we briefly present necessary background information on CL in Section
2, we introduce CAML in Section 3. In Section 4 we show that CAML is strictly
more expressive than CL. This result shows a crucial difference between AML
and CAML: whereas the former is as expressive as the underlying epistemic
logic, and thus completeness of AML follows trivially from reduction axioms,
we cannot have reduction axioms for CAML. Moreover, we claim that CAML is
incomparable to alternating-time temporal logic (ATL) [5]. Added expressivity
of CAML comes at a price. In Section 5 we show that the complexity of the
model checking problem jumps from P for CL to PSPACE-complete for CAML.
Finally, we conclude in Section 6.

2 Language and Semantics of Coalition Logic

In this section we briefly provide all the necessary background information on
coalition logic [2,23]. Let A be a finite set of agents, and P be a countable set
of propositional variables.

Action Models for Coalition Logic 3

Definition 1. The language of coalition logic CL is defined by BNF:

pu=ploel(@ne)] (Chy
where p € P and C' C A. Formulas (C))¢ are read ‘coalition C' can force ¢’. We

denote A\ C as C. The dual of (C)¢ is [C]e := —~{(C)—p. We will call subsets
of A ‘coalitions’, and we will also call complements of C, C, ‘the anti-coalition’.

The semantics of CL is given with respect to concurrent game models. A
concurrent game model (CGM), or a model, is a tuple M = (S, Act, act, out, L).
S is a non-empty set of states, and Act is a non-empty set of actions.

The function act : A x S — 24¢ \ () assigns to each agent and each state a
non-empty set of actions. A C-action at a state s € S is a tuple a such that
ac(i) € act(i, s) for all i € C. The set of all C-actions in s is denoted by act(C, s).
We will also write ag, U ae, to denote a Cy U Ca-action with C; N Cy = (.

A tuple of actions a = {(ay,...,ax) with k =| A | is called an action profile.
An action profile is ezecutable in state s if for all i € A, a; € act(i,s). The set
of all action profiles executable in s is denoted by act(s). An action profile «
extends a C-action a¢, written ac C a, if for all i € C, a(i) = ac(i).

The function out assigns to each state s and each « € act(s) a unique output
state. We write Out(s, ac) for {out(s,a) | @ € act(s) and ac C a}. Intuitively,
Out(s, ac) is the set of all states reachable by action profiles that extend some
given C-action ac. Finally, L : S — 2% is the valuation function.

We will also denote a CGM M with a designated, or current, state s as Mj,
and will sometimes call it a pointed model. We call M finite if S is finite.

Definition 2. Let M, be a pointed CGM. The semantics of CL is defined in-
ductively as follows:

M E=p iff s € L(p)

M |=—p iff Mg [

Ms =AY iff Ms = ¢ and Mg =1

M = (C) ¢ iff Jac, Yoz : My |= ¢, where t = out(s,ac U ag)
M, = [Cly iffVac,Jog : My = @, where t = out(s, ac U ag)

Informally, the semantics of the coalition modality (C))¢ means that in the
current state of a given CGM there is a choice of actions by the members of
coalition C' such that no matter what the opponents from the anti-coalition C
choose to do at the same time, ¢ holds after the execution of the corresponding
action profile.

Definition 3. We call a formula ¢ valid if for all M it holds that M, = .

Ezample 1. An example of a CGM is presented in Figure 1 on the left. The
model is called M and it describes the following protocol. There are two states:
s, where agents receive a prize (propositional variable p), and state ¢, where
agents do not receive a prize. Each agent has two actions in each state, and they
can switch states by ‘synchronisation’, i.e. by choosing actions with the same
number, either agby or a;b;. Formally, M, = p A ({a, b}))—p. At the same time,
no agent alone can force the transition to state ¢, or, in symbols, M, = [a]pA[b]p.

4 R. Galimullin and T. Agotnes

The classic notion of indistinguishability between models in modal logic is
bisimulation. In this paper, we will use a CGM-specific version of bisimulation

[1]-

Definition 4. Let M = (SM, ActM act™ out™, LM) and N = (SV, Act?,
actN, out™, LN) be two CGMs. A relation Z C SM x SN is called bisimulation
if and only if for all C C A, sy € SM and sy € SN, (s1,82) € Z implies

— forallp € P, 51 € LM(p) iff s, € LN (p);

— for all ac € actM (C,s1), there evists Bc € actN(C, sy) such that for every
sh € Out™ (sq, Bc), there emists sy € Out™ (sy,ac) such that (s}, sh) € Z.

— The same as above with 1 and 2 swapped.

If there is a bisimulation between M and N linking states s1 and so, we call the
pointed models bisimilar (M,, = Ng,).

The crucial property of bisimilar models, that will be of use later in the
paper, is that bisimilar models satisfy the same set of formulas of coalition logic.

Theorem 1 ([1]). Let M and N be CGMs such that M = N and there is a
bisimulation between s € SM and t € SN. Then for all ¢ € CL, My = ¢ iff

Nt):go

3 Coalition Action Model Logic

Before providing formal definitions, we introduce coalitional action models intu-
itively with an example.

3.1 Informal Exposition and Example

Coalitional action models are inspired by action models of DEL [9, 12], and they
are, basically, models, where each state has an assigned formula that is called a
precondition. Preconditions indicate which states of action models are executable
in which states of a given CGM. An action model can be viewed as a policy,
explicitly describing legal joint actions and implicitly imposing restrictions on
existing joint actions in different states. However, the result of implementing
an action model policy is not necessarily a submodel of the initial model: it
can in fact have more states, if the action model describes more possible actions
compatible with the same state in the initial model. We capture this by a product
update using a restricted Cartesian product, very similar to product updates in
AML. In particular, in the update of a CGM with an action model, we take
a product of states of the CGM and those states of the action model that are
satisfied according to preconditions. In the resulting updated model, a transition
labelled with an action profile is preserved, if there is a corresponding transition
in both CGM and the action model. To differentiate CGMs and coalitional action
models, we will use sans-serif font for the elements of the latter.

Action Models for Coalition Logic 5

aob1 aobo a()bl aOb1 .)
a1bo aiby aibo aobo t: T Da-b_
s:p aobo t:-p s: T
S ab _~
a1b0
aiby uip _Da-b_
M M

Fig. 1. Model M and action model M.

(t,t) L p :D a()bl, a1bg

ao b() a0b1
aibi aobo aobo a1bo

Q a1b1 ai bl Q

MM (s,8)ip———(5t) i pe———(L,;5):
aopby U aobo
aob1, aibo
aibo aiby

) agbo, aob:
(57 u) P D albo, aibi
Fig. 2. Updated model M™ with added action profiles in bold font.

Ezxample 2. As a continuation of our prize example, consider action model M in
Figure 1. In the figure, a_b_ is a shorthand that the corresponding transition is
labelled by all of aobo, aobl, albo, and albl.

Action model M describes a policy that prescribes the following modification
of the protocol expressed by CGM M. In all states, s or ¢, if the first agent chooses
action ag, then follow the prize protocol without any modifications (expressed
by state t). If the first agent chooses action a1, then agents enter a state, where
each their joint action gets a prize (expressed by state u).

The result of updating CGM M with action model M is updated model MM
(Figure 2) that is based on a product of states of M with those states of M that
satisfy preconditions. For example, precondition of state s is satisfied by both s
and ¢, and thus we have both (s,s) and (¢,s) in the updated model. There is an
arrow labelled with an action profile « between some (s,s) and (¢, t) if there are
arrows labelled with « from s to ¢t and from s to t. Finally, p is satisfied by (s,s)
if p e L(s).

Observe that although in the example for both M and M transitions from
each state were defined for each action profile, it is not the case for the corre-
sponding function of MM. The reason for this is that the intersection of transi-
tions from M and M is not guaranteed to include all executable action profiles.

6 R. Galimullin and T. Agotnes

Indeed, in the example, in M, action profile a1b; takes the agents to a —p-state,
while the same profile in Mg takes the agents to a p-state. Similarly for action
profiles a;1bg in states ¢t and s, and agby and a1b; in states s and u.

This can be interpreted as the uncertainty (or a conflict) agents may have
when a new modification contradicts the existing protocol. We deal with such
situations by making the agents remain in the current state in the cases of such
uncertainty. In other words, we follow the rule that says when in doubt, remain
where you are. On the level of updated models this means that for all action
profiles « that are not defined, we put outMM((s, s),a) = (s,s). That is why in
MM action profiles aiby and a;b; (in bold font) loop back to states (¢,s) and
(s,s) correspondingly. Moreover, action profiles agby and a1b; loop back to (s, u).
In this paper, we will write labels of added self-loops in bold font.

Of course, our approach to managing these conflicts is quite conservative, and
one can imagine more radical ways of updating a CGM. We leave the exploration
of such alternatives for future work.

All in all, action model M updates agents’ strategic abilities by taking into
account what they actually can achieve in a given CGM M. Thus, in Figure
2 we can indeed see that in state (s,s) action ag by the first agents leads to
agents executing the same protocol as described by CGM M (states (s,t) and
(t,t) in the updated model). On the other hand, contrary to the situation in
the initial model, now in the updated model agents can reach state (s, u), where
they always receive prizes. Formally, we can write My £ ({a,b})[{a,b}]p and
My E [Mg{{a,b})[{a,b}]p, where construct [Ms] means execution of action
model M with the actual state s.

3.2 Syntax and Semantics of Coalition Action Modal Logic

Definition 5. A coalitional action model M, or an action model, is a tuple
(S, Act, act, out, pre), where S is a finite non-empty set of states, Act is a non-
empty set of actions, act : A x S — 22\ () assigns to each agent and each
state a non-empty set of actions. Definitions related to action profiles are the
same as in the definition of CGM. Function out is a partial function that maps
action profiles executable in a state to a unique output state. Finally, pre : S—CL
assigns to each state a formula of coalition logic. We denote action model M with
a designated state s by M.

Definition 6. The language of coalition action model logic CAML is given
recursively by the following grammar:

pu=p|oel(@ne) | (Chelrle

miu=Ms | (mUm)
where [w]e is read ‘after execution of 7, ¢ is true’, and the union operator stands
for a non-deterministic choice. Dual {m)p is defined as —[m]—.

Definition 7. Let My, = (S5, Act, act, out,L) be a pointed CGM and Mg =
(S, Act, act, out, pre) be a coalitional action model. The semantics of CAML ex-
tends the semantics of CL in Definition 2 with the following:

Action Models for Coalition Logic 7

E [Mde iff M = pre(s) implies M('\;',s) Eop
s E(Mgyp iff My |= pre(s) and M(I\g,s) Eop
M, = [r U pl iff M, =[xl and M, = [l

M = (m U p)p iff My = (m)p or My = (p)¢

The updated model MM is a tuple (SMM,Act, act, outMM, L), where

M,
M

SM" = {(s,5) |s€ 8,5 €S, and M, = pre(s)},

MM — -
outMM((s,s),a) _ (t,t) (t,t) € -S ,out(s,a) =t and out(s,a) =t
(s,s), otherwise.

According to the definition of an updated model, we assume that action mod-
els do not grant agents new actions, and, moreover, the valuation of propositional
variables remains the same. Thus, action models can be viewed as policy updates
that deal only with agents’ strategic abilities, and take into account what agents
can actually do in the current CGM. Another point worth mentioning is that in
our definition of action models we do not require the function out to be total.

There are many similarities between AML and CAML. In particular, all of
the following properties are valid for both logics. Their validity in the case of
CAML can be shown by application of the definition of the semantics.

Proposition 1. All of the following are valid.

The first item states that there is only one way to execute an action model.
This is similar to public announcements [25]. Note, however, that in general,
(m)yp — [7]p is not valid, since (m)ep is executed non-deterministically. The sec-
ond property shows that updating a model does not affect propositional vari-
ables. Interaction between action models and negation is captured by the third
item. Property number four states distributivity of action model updates over
conjunction. Finally, the fifth item shows how we can get rid of the union.

Even though Proposition 1 shows that AML and CAML have much in com-
mon, the logics are different in a very crucial way. Items two, three, and four of
the proposition, interpreted as AML formulas, in conjunction with an interaction
principle for AML action models and knowledge modality, constitute reduction
axioms of AML. This means, that in the context of AML, each formula with an
action model can be equivalently rewritten into a formula without it, thus show-
ing that AML is as expressive as epistemic logic, and providing a completeness
proof for AML ‘for free’ (see more on this [12, Sections 6,7, and 8]). We show in
the next section that this is not true for CAML.

8 R. Galimullin and T. Agotnes
4 Expressivity

In this section, we argue that, unlike the case of DEL, CAML is strictly more
expressive than CL, and thus no reduction axioms are possible. Apart from that,
we compare CAML to alternating-time temporal logic (ATL) [5].

Definition 8. Let ¢ and i be formulas of a language interpreted on CGMs. We
say that they are equivalent if for all pointed CGMs My it holds that My = ¢

iff M, = .

Definition 9. Let £, and Ly be two languages. We say that L1 is at least as
expressive as Lo (Lo < L1) if and only if for all ¢ € Lo there is an equivalent
¥ € Ly. If L1 is not at least as expressive as Lo, we write Lo L L1. If Lo < L4
and L1 € Lo, we write Lo < L1 and say that Ly is strictly more expressive than
Lo. Finally, if L1 € Lo and Lo L L1, we say that L1 and Ly are incomparable.

Theorem 2. CL < CAML.

Proof. That CL < CAML follows from the fact that CL ¢ CAML. To show
that CAML £ CL , consider models My from and Ny from Figure 3. In the
models, a_b_ is a shorthand for all of agby, agbi, a1bg, and a;b;. Observe that
the two models are quite similar and the difference is that in M, the agents
can force —p if they choose actions labelled with the same number, e.g. agby,
and in Ny the agents can force —p is they choose actions labelled with different
numbers, e.g. agb;. It is easy to check that the two models are bisimilar, and
thus satisfy the same formulas of CL by Theorem 1.

apbi aobo
a1bg aib a-b_ a1b1 aoby a_b_ aobo
Q aobo Q Q a1b0 Q Q
S p—m——— 5 t:p S$'p—m—————t:p s: T
M N M

Fig. 3. Models M, N, and action model M.

Now consider action model M in Figure 3. The action model has only one
state with the precondition T and one self-loop labelled with agbg. The results
of updating M, and N, with Mg are presented in Figure 4.

It is clear that My = (Mg){{{a,b})—p and Ny = (Ms){({a,b})—p. Thus we
have that, first, no formula of CL can distinguish My and N, and, second,
that formula (Mg){({a,b})—p of CAML distinguishes the models. Hence, CL <
CAML. g

From Theorem 2 it follows that there cannot be any reduction axioms for
CAML. There is, however, yet another interesting corollary. In the proof, we

Action Models for Coalition Logic 9

aob1
a1bo aobo, agbi aobo, agbi aobo, agbi
ai1b; aibo, a1b: a1bo, a1b: a1bo, aib:
N D 0 0
(s,8) :p ———— (t,t) : —p (8y8):p (t,t) : —p
MM M

Fig. 4. Updated models M™ and N™ with added action profiles in bold font.

started with two bisimilar models, and the results of updating them with the
same coalitional action model turned out to be not bisimilar. This is quite dif-
ferent from DEL, where updates with action models preserve bisimulation [12,
Proposition 6.21].

Corollary 1. Coalitional action models do not preserve bisimulation.

Now we turn to the comparison of CAML and ATL [5], with the latter being,
probably, the most well-known logic for reasoning about strategic abilities. Other
notable examples of such logics include ATL* [5] and strategy logic (SL) [22].
We will consider only ATL in this paper, and the expressivity proofs below can
be reused for both ATL* and SL.

ATL extends CL with temporal operators Xy for ‘p is true in the next step’,
Gy for ‘@ is always true’, and YUy for ‘¢ is true until ¢’. Below, we concisely
present ATL, and the the interested reader can find more details in the literature
[5,1,2].

Definition 10. The AT L is defined recursively as follows:

pu=pl el (e Ae) [(ONXe [(ONGe [(CheUp

Before we provide the semantics of the logic, we need some additional defi-
nitions.

Definition 11. A memoryless strategy for agent i in model M is a function
str; : S — Act such that stri(s) € act(i,s). A memoryless strategy for coalition
C, denoted strc is a tuple of memoryless strategies for each i € C.

Definition 12. Given a CGM M = (S, Act, act, out, L), a play X is an infinite
sequence of states in S such that for all i > 0, state s;11 is a successor of s;.
We will denote the i’th element of play A as A[i]. The set of all plays that can be
realised by coalition C following strategy strc from some given state s, denoted
by Plays(s, strc), is defined as

{N] A[0] = s and A[i + 1] € Out(A[i], strc(A[d])) for all i € N}.

Definition 13. Let My be a CGM. The semantics of ATL (omitting Boolean
cases) is defined as follows:

10 R. Galimullin and T. Agotnes

M = (C)Xe iff Jac : My = ¢ for all t € Out(s, ac)
M, = (C)Gy iff Istrc, VA € Plays(s, strc) : My = ¢ for alli >0
M = (CYwUe iff Istre, YA € Plays(s, stre),3i >0

My | @, and My |9 for all 0 < j <
It is immediate that (C)Xp in ATL is equivalent to {(C)p in CL.

To show that the languages of ATL and CAML are incomparable with respect
to expressive power, we need only Always operator out of all temporal features of
ATL. The intuition behind the proof is that formula ({C) Gy can possibly reach
states on any distance from the current one. At the same time, the distance
formulas of CAML can reach is bounded by their sizes.

Theorem 3. CAML and AT L are incomparable.

Proof. To argue that CAML £ AT L, we can reuse the proof of Theorem 2 with-
out any modification with only mentioning that for bisimilar models, Theorem
1 can be extended to AT L [1].

For the other direction, consider an AT L formula {(a))Gp, and assume, to-
wards a contradiction, that there is an equivalent formula of CAML ¢ of size
n = |p|. Also, consider models M and N in Figure 5.

M s:pDao o
ao ao ao aop ao Q
N t:p t1:p th—1:p tn i D tn+1

Fig. 5. Models M and N.

Model M is a single-state model with a loop, where state s satisfies p. Model
N is a chain of size n+ 2, where states ¢, and ¢; for 1 < 7 < n satisfy p, and state
tn1 does not satisfy p.

We have that M = ((a))Gp since there is only one state available, s, and the
state satisfies p. On the other hand, it is clear that N; = ((a))Gp. Indeed, we
can see that Gp does not hold in ¢ (or any other state of N): a —p-state, t,1, is
reachable from t.

That Mg | ¢ if and only if Ny | ¢ can be shown by induction on the
structure of . Boolean and coalitional cases are straightforward. Also note that
state t,,41, which could be used to distinguish M, and Ny, is n steps away from
t. Thus, there is not enough modal depth to witness the difference using only
coalitional modalities. For the case of action models, assume that in the resulting
updated model there is a state (¢x,s). Since action models do not change values
of propositional variables, (tx,s) will satisfy the same propositions as ¢, satisfied
in N. Moreover, recall that there is a transition from one state to another in
the updated model, if the transition was present both in N and the action
model. Thus, (tx,s) can be connected via ag only to states (¢x+1,t).Hence, a

Action Models for Coalition Logic 11

distinguishing non-p-state will still remain n — i steps away after 7 steps of the
induction. O

5 Model Checking

Now we show that the model checking problem for CAML is PSPACE-complete.
It is known that model checking coalition logic can be done in polynomial time,
and, thus, in the case of CAML, we have to pay for increased expressivity with
higher complexity. This is similar to the situation with DEL, where model check-
ing epistemic logic can be done in polynomial time [19], and the complexity of
model checking action model logic is PSPACE-complete [§].

Theorem 4. The model checking problem for CAML is PSPACE-complete.

Proof. To show that the model checking problem for CAML is in PSPACE,
we present Algorithm 1. Boolean cases and the case of coalition modalities take
polynomial time and we omit them for brevity. For an overview of model checking
of strategic logics, including CL, see [11].

Algorithm 1 An algorithm for model checking CAML

1: procedure MC(M, s,)
2: case ¢ = My
if MC(M, s, pre(s)) then
return MC(MM, (s,s),v)
else
return true
case ¢ = [T U ply
return MC(M, s, [r]¢) and MC(M, s, [p])

The algorithm follows the semantics and its correctness can be shown via
induction on . Now we argue that the algorithm takes at most polynomial
space. The interesting case here is ¢ = [Mg]t. Since preconditions are formulas
of coalition logic, MC(M, s, pre(s)) is computed in polynomial time, and hence
space. The size of updated model MM is bounded by O(|M| x [M|) < O(|M]| x
|¢]). Finally, since there at most || symbols in ¢, the total space required by
MC(M, s,) is bounded by O(|M| x |p|?).

To show hardness, we take the PSPACE-hardness proof of the model checking
problem for AML [8] as a starting point, and adapt the technique to CGMs and
coalitional action models. The main difficulty we face here is that we need to
fine-tune models and action models used in the proof in order to ensure that out
functions behave as expected.

We use the classic reduction from the satisfiability of quantified Boolean
formula (QBF) that is known to be PSPACE-complete. Also, without loss of
generality, we assume that our QBFs have 2k variables with alternating quanti-
fiers. See more on satisfiability of such QBFs in [7, p. 83].

12 R. Galimullin and T. Agotnes

For a given QBF ¥ := Vx13xs ... Vaor_13xopth(x1, ..., xor) We construct in
polynomial time a CGM M, over A = {a}, action models AddChainisi0 for all z;,
action model Copy,, and a formula of CAML 1" such that

¥ is satisfiable iff
M = [AddChainlg U Copy,|(AddChain2; U Copy,) . . .
[AddChain(2k — 1)531%1 U Copy,](AddChain2kg. U Copy,)y'.

Model M is a tuple (S, Act, act,out, L), where S = {s; | 0 < ¢ < 2k + 1},
Act = {a; | 0 < i < 2k}, act(a,s;) = Act for 0 < i < 2k, and act(a, sop41) =
{ao}, out(s;,a) = s;11 for 0 < @ < 2k, and out(sgp41,0) = sopt1, and {x;} =
L(s;) for 0 < 4 < 2k + 1. The model is a chain of states of length 2k + 1 such
that each next step is reachable via actions ag, ...,asx of agent a, and there is a
self-loop labelled with ag in the last state so41. Each state satisfies exactly one
propositional variable x;.

Coalitional action model AddChaini is a tuple (S, Act, act, out, L), where S =
{s: 10 <j<i}uU{sl}, Act = {a; | 0 < i < 2k}, act(a,s}) = {a; | 1 <1< i}
for j # i and j # 0, act(a,s)) = Act, act(a,st) = {a; | 0 <1 < 2k and | # i},
out(sh,a;) = sh,; for 0 < j < i, 1 <1 <iandl # 0, out(sh,a;) = s. for
I =0and ! > i, out(s,a;) = si, out(si,a;) = st for 0 < j < 2k and j # i,
pre(s;) = x; for 0 < j <4, and pre(s,) = —zo. Action model AddChaini is a chain
of length 7 where each next state is reachable via all actions a; excluding ag, the
final state in the chain has a self loop labelled with a;, and a special state s, is
reachable from the first state of the chain via ag and all a; such that j > 7. The
intuition behind the action models is that AddChaini’s add chains of length i to
M, meaning that variable x; has been set to 1. Moreover, all other chains that
were already in a CGM are not affected.

Coalitional action model Copy is a tuple (S, Act, act,out, L), where S = {t},
Act = {a; | 0 < i < 2k}, act(a,t) = Act, out(t,a) = t, and pre(t) = T. Action
model Copy just copies a given model so that no new chain appears meaning
that the current x; has been set to 0.

Finally, we translate 1)(z1, . . ., 72x) by substituting every z; with ({(a)))![a]x;,
where (((a)))? is a stack of size i of ((a))’s. In the resulting translated formula,
subformula ({(a)))*[a]z; holds if in a model there is a chain of length i with a
loop at the end. This means that variable x; has been set to 1.

As an example, consider a QBF Va;3xs(x1 —). We translate the formula
into a CAML formula

[AddChainlg U Copy:](AddChain2g; U Copy:)({(a)) [a]z1 — (a))(a))[a]z2).

The corresponding model M and action models AddChainl, AddChain2, and Copy
are presented in Figure 6.
According to the semantics,

M; = [AddChainlg U Copy:](AddChain2g U Copy:) ((a)) [a]z1 — () {(a)[a]z2)
if and only if
M; = [AddChainlg](AddChain2g; U Copy:)({(a)) [alz1 — (a)) (a))[a]z2)

Action Models for Coalition Logic 13

. 1 ao, a2 5 ao

S0 Zo Sp i To — Sy : X0 So:To — Sy ! o
aop, a1, a2 al aop, a2 ai,asz aopal

S1: %1 s%:ml S%:xl
ap, a1, az ai ai, az

AddChainl

S2 1 X2 azngzxz

ao, a1, a2 a0, a1, as AddChain2

ao (s3:a3 t: T
M Copy

Fig. 6. Model M, and action models AddChainl, AddChain2, and Copy.

and

M |= [Copy:](AddChain2g; U Copyr)({a)) [a]z1 — (a)) (a)) [a]x2).

In other words, (AddChain2g; U Copy:)({a))[alz1 — {(a)){(a)) [a]z2) should hold

in both M(Addc')“""1 and M(COPY) Updated model M(Ad‘jc'h‘"”‘1 is depicted in Figure
0:Sp

7, and model Mé °p¥) will just copy M, so we do not provide the figure.

Now, for each of M(Addcg‘a'”l and M(S 0 there must be a subsequent update

with either AddChain2 or Copy such that ((a)[a]z1 — (@) {a))[a]ze will hold in
the resulting model.
The result of updating M P with AddChain2 is shown in Figure 7. Note that

(‘;gpgvg‘;d“ai"? = (a)[a]z1 — (a){(a)[a]azs as the antecedent is not satisfied.

Also observe that M, (CS °p{ tc)°py would satisfy the formula for the same reason. All

in all, this corresponds to setting x; to 0 in the original QBF, and thus the QBF
will be true irregardless of the value of xs.

Consider updated model M é‘idg)‘ainl. It has only chains of lengths 1 and 3,
»Sp

and thus we have that MA%d5haint = ((g) [a]z and at the same time M/AddGhain
(30,55) (s0.53)

(@) (a)[a]xz. So, Mé‘(’)‘f%‘ainl does not satisfy formula {(a)) [a]z1 — {a)) {a)) [a]z2.

Hence, updating it with Copy would also result in a model, where the formula
is not satisfied. This corresponds to choosing value 1 for z; in our QBF, and
setting xo to 0 will not make the QBF true. However, choosing 1 for zo satisfies

the formula. In terms of updated models this corresponds to updating AJAddChaint
(50,55)

with AddChain2, and the result of such an update is depicted in Figure 8. Note
that in Figure 8 we take the connected component that includes state (so, sy, 53),

14 R. Galimullin and T. Agotnes

(s0,50) : o (s0,t,58) : o
ao, a2 ai ao ai, az

(sl,si) 2 (sl,s%) 2 (sl,t,si) 2 (s1,t, sf) T2
ao, a2 ag,g,az ao, a1 ai, a2
(s2,8%) @ o (s2,t,52) : T2 (s2,t,53) : 22
ao, a2 ao, a1 ao,g,ag
(s3,s%) @ a3 (s3,t,52) : o3

AddChain 1 Copy,AddChain2

Fig. 7. Updated models AAddChaint gpng pgCopy-AddChain2 it added action profiles in
bold font.

and we disregard state (sq,s1,s?) that will not be connected to the chosen com-
ponent. It is clear that M (/: id_;)h:;; LAddChain2 * ohich corresponds to setting both
x1 and z9 to 1, satisfies {(a)[a]z1 — (a)){(a)[a]z2.

Our construction mimics QBFs in the following way. For a universal quantifer
Vx; we use [AddChainisg UCopy,] that corresponds to producing an updated model
with a chain of length 4, setting x; to 1, and an updated model without such a
chain, setting x; to 0. In the case of Jz;, the choice between AddChainisé and
Copy, is existential, which is expressed by <AddChaini56 U Copy,). As a result of
such a choice, we will have an updated model with a chain of length i, or an
updated model without such a chain. a

Remark 1. Our hardness reduction relied heavily on non-deterministic choice,
i.e. constructs [U p] and (7 U p). As we have already mentioned in Proposition
1, item five, we can equivalently rewrite formulas with unions to formulas without
it. This rewriting, however, can result in a formula of exponential size. We leave
the problem of determining hardness of model checking CAML without union
open, and conjecture that it is still PSPACE-hard. On a similar note, a more
complicated construction than the one used in [8] was employed to show that
DEL without union is PSPACE-hard [17, Theorem 4].

Action Models for Coalition Logic 15

(50,58, 3) : o

aq az ai
(s1,5%,8%) : @1 (s1,5%,81) 1 a1 (s1,51,51) : @1
ao as aop,ai,az
(52:51753«) T T2 (52,51,55) o)
ao ap, az

(83751751) - I3

U

ao

MAddChaml ,AddChain2

Fig. 8. Updated model JgAddChainl,AddChain2 it} 5 dded action profiles in bold font.

6 Discussion

We presented coalition action model logic (CAML) for reasoning about how
agents’ abilities change as a result of updating a CGM with a coalitional ac-
tion model. Even though we took inspiration from DEL, CAML turned out
quite different. In particular, CAML is strictly more expressive than the base
CL, and thus no reduction axioms are possible. We also proved that CAML is
incomparable to ATL, and conjecture that the same holds for other logics for
reasoning about strategic abilities, namely ATL* and SL. Finally, we investigated
the complexity of the model checking problem for CAML, and showed that it is
PSPACE-complete even in the case of a single agent.

Since this is the first proposal of DEL-like action models for CGMs, there
is a plethora of open questions. First, the non-existence of reduction axioms
leaves open the problem of providing a sound and complete axiomatisation of
CAML. Moreover, it is also worthwhile to investigate coalitional action models
with postconditions (similar to those considered in [14]), i.e. action models that
allow changing valuations of propositional variables. While we expect that post-
conditions will not affect the complexity of model-checking, expressivity results
may turn out to be more surprising. Taking into account that updated models
are refinements [10] of the corresponding original models, it is also quite tempt-
ing to investigate the problem of synthesis [18,13] of coalitional action models:

16 R. Galimullin and T. Agotnes

having a starting CGM M and a desired target model IV, synthesize a coalitional
action model M such that MM = N.

Another avenue of further research is having a more expressive base language
than CL. In particular, we plan to use action models with ATL and ATL*. Apart
from that, we had to make a design decision that whenever the result of executing
an action profile is undefined (or, there is a conflict between the existing model
and a proposed modification), then a given system remains in the same state.
However, there may be other intuitively natural ways to handle situations like
that. Moreover, our action models are quite conservative in the sense that they
neither grant agents new actions nor revoke any actions. It would be exciting to
come up with action models that affect agents’ sets of available actions.

Yet another avenue of further research is adding a temporal dimension to our
framework in the vein of [20, 26]. Such an extension would allow us to store the
history of updates directly in a model. This approach was investigated for the
case of DDCL in [16], where it is used to reason about smart contract upgrades
on blockchain structures.

Acknowledgments We would like to thank anonymous reviewers of AiML 2022
and DaLi 2022 for their careful reading of the paper and encouraging comments.
We would also like to thank attendees of Dal.i 2022 for fruitful discussions, and
in particular Maksim Gladyshev for pointers to relevant literature.

References

1. Agotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Samet, D. (ed.) Proceedings of the 11th TARK. pp.
15-24 (2007). https://doi.org/10.1145/1324249.1324256

2. Agotnes, T., Goranko, V., Jamroga, W., Wooldridge, M.: Knowledge and ability.
In: van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.) Handbook
of Epistemic Logic, pp. 543-589. College Publications (2015)

3. Agotnes, T., van der Hoek, W., Juan A. Rodriguez-Aguilar, C.S., Wooldridge, M.:
On the logic of normative systems. In: Veloso, M.M. (ed.) Proceedings of the 20th
IJCAL pp. 1175-1180 (2007)

4. Agotnes, T., van der Hoek, W., Wooldridge, M.: Robust normative systems and
a logic of norm compliance. Logic Journal of the IGPL 18(1), 4-30 (2010).
https://doi.org/10.1093/jigpal /jzp070

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672-713 (2002). https://doi.org/10.1145/585265.585270

6. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
Journal of the IGPL 23(4), 601-627 (2015). https://doi.org/10.1093 /jigpal/jzv020

7. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. CUP
(2009)

8. Aucher, G., Schwarzentruber, F.: On the complexity of dynamic epistemic logic.
In: Schipper, B.C. (ed.) Proceedings of the 14th TARK (2013)

9. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165224
(2004). https://doi.org/10.1023/B:SYNT.0000024912.56773.5¢

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Action Models for Coalition Logic 17

Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Re-
finement modal logic. Information and Computation 239, 303-339 (2014).
https://doi.org/10.1016/j.ic.2014.07.013

Bulling, N., Dix, J., Jamroga, W.: Model checking logics of strategic abil-
ity: Complexity. In: Dastani, M., Hindriks, K.V., Meyer, J.J.C. (eds.) Specifi-
cation and Verification of Multi-agent Systems, pp. 125-159. Springer (2010).
https://doi.org/10.1007,/978-1-4419-6984-2 5

van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese
Library, vol. 337. Springer (2008)

van Ditmarsch, H., van der Hoek, W., Kooi, B., Kuijer, L.B.: Ar-
row update synthesis. Information and Computation 275 (2020).
https://doi.org/10.1016 /j.ic.2020.104544

van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:
Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Proceedings of the 7th
LOFT. Texts in Logic and Games, vol. 3, pp. 88-101. Amsterdam University Press
2008

galirr?ullin, R., Agotnes, T.: Dynamic coalition logic: Granting and revoking dicta-
torial powers. In: Ghosh, S., Icard, T. (eds.) Proceedings of the 8th LORI. LNCS,
vol. 13039, pp. 88-101. Springer (2021). https://doi.org/10.1007/978-3-030-88708-
AN

G\:ﬂimullim7 R., Agotnes, T.: Coalition logic for specification and verification of
smart contract upgrades. In: Proceedings of the 24th PRIMA. p. (to appear) (2022)
de Haan, R., van de Pol, I.: On the computational complexity of model checking
for dynamic epistemic logic with S5 models. FLAP 8(3), 621-658 (2021)

Hales, J.: Arbitrary action model logic and action model synthesis. In: Pro-
ceedings of the 28th LICS. pp. 253-262. IEEE Computer Society (2013).
https://doi.org/10.1109/LICS.2013.31

Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence 54(2), 319-379 (1992).
https://doi.org/10.1016 /0004-3702(92)90049-4

Hoshi, T.: Merging DEL and ETL. Journal of Logic, Language and Information
19(4), 413-430 (2010). https://doi.org/10.1007/s10849-009-9116-7

Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4), 536-559
(2011). https://doi.org/10.1017/S1755020311000189

Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Lo-
daya, K., Mahajan, M. (eds.) Proceedings of the 30th FSTTCS. LIPIcs,
vol. 8, pp. 133-144. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2010).
https://doi.org/10.4230/LIPIcs. FSTTCS.2010.133

Pauly, M.: Logic for Social Software. Ph.D. thesis, ILLC, University of Amsterdam,
The Netherlands (2001)

Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and
Computation 12(1), 149-166 (2002). https://doi.org/10.1093 /logcom,/12.1.149
Plaza, J.: Logics of public communications. Synthese 158(2), 165-179 (2007).
https://doi.org/10.1007 /s11229-007-9168-7

Renne, B., Sack, J., Yap, A.: Logics of temporal-epistemic actions. Synthese 193(3),
813-849 (2016). https://doi.org/10.1007/s11229-015-0773-6

Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial
agent societies. In: Proceedings of the 10th AAAIL pp. 276-281 (1992)

Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-
line design. In: Agre, P.E., Rosenschein, S.J. (eds.) Computational Theories of
Interaction and Agency, pp. 597-618. MIT Press (1996)

