
Varieties of Distributed Knowledge

Rustam Galimullin

University of Bergen
Bergen, Norway

Louwe B. Kuijer

University of Liverpool
Liverpool, U.K.

Abstract

Distributed knowledge is one of the better known group knowledge modalities. While
its intuitive idea is relatively clear, there is ample room for interpretation of details.
We investigate 12 definitions of distributed knowledge that differ from each other in
the kinds of information sharing the agents can perform in order to achieve mutual
knowledge of a proposition. We then show which kinds of distributed knowledge are
equivalent, and which kinds imply each other, i.e., for any two variants τ1 and τ2 of
distributed knowledge we show whether a proposition φ being distributed knowledge
under definition τ1 implies that φ is distributed knowledge under definition τ2.
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1 Introduction

Epistemic logic (see, e.g., [7,13]) can be used to describe the knowledge of one
or more agents. If multiple agents are involved, one can then study various
kinds of group knowledge. On the one hand, we may consider types of group
knowledge that are stronger than individual knowledge; for example, one may
wonder whether a particular proposition φ is known by all members of the
group, or even whether φ is so obvious (to the group members) as to be common
knowledge. On the other hand, we can also consider a type of group knowledge
that is weaker than individual knowledge; even if φ is not currently known
by any individual group member, the group might be able to learn φ if they
combine their information. For example, perhaps agent a knows that φ → ψ
and b knows φ. Neither of them knows ψ, yet if they pool their knowledge they
would be able to get to know it.

This latter kind of group knowledge is typically known as distributed knowl-
edge (see, e.g., [11,13,7,16,14,4]). Distributed knowledge is a kind of hypothet-
ical knowledge: φ is distributed knowledge among a group G if the members
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2 Varieties of Distributed Knowledge

of G could, if they combined their knowledge, learn that φ is true. Note that
we do not require the agents to actually combine their knowledge in this way,
it suffices that they could do so and learn φ.

While the general idea of distributed knowledge is reasonably clear, there
is no consensus about how to formally define it. Broadly speaking, there have
historically been two main approaches.We will refer to these approaches as the
intersection approach and the full communication approach, with the latter
term being derived from [16]. We should note, however, that these are not
standardised terms. In fact, even “distributed knowledge” is not fully stan-
dard, with other terms such as “group knowledge”, “collective knowledge” and
“implicit knowledge” also being used.

In both approaches, the distributed knowledge of a group G of agents de-
pends on what information the group members possess. In epistemic logic,
the information state of an agent a is generally represented by an accessibility
relation ∼a, and a knows a formula φ, denoted □aφ, in world s if and only if
φ is true in every world s′ such that s ∼a s′.

The intersection approach is the most common one, and is used in
[11,13,7,16,10,14,4], among many others. Here, φ is distributed knowledge in
world s if φ is true in every world s′ such that s ∼G s′, where ∼G=

⋂
a∈G ∼a.

The intuition behind this approach is that the group G is collectively capable
of distinguishing between s and s′ if any of its members can.

The full communication approach is less common, but still used in many
places, including [12,16,10,14]. In this approach, φ is distributed knowledge
among G if and only if the set of formulas known by any of the agents entails
φ, i.e., if {ψ ∈ L0 | ∃a ∈ G : s |= □aψ} |= φ. In order to avoid circularity we
do have to be careful to specify that the known formulas ψ must not reference
distributed knowledge, i.e. they must be from the basic epistemic logic L0.

Observant readers may notice that there is significant overlap between the
list of papers using the intersection approach and those using the full communi-
cation approach. This is because one of the topics studied has been the relation
between the intersection and full communication versions of distributed knowl-
edge. The outcomes of this comparison are that (i) if φ is full communication
distributed knowledge then it is also intersection distributed knowledge, (ii) φ
can be intersection intersection distributed knowledge without being full com-
munication distributed knowledge, and (iii) on certain types of models, the two
kinds of distributed knowledge are equivalent.

The reason the two approaches to distributed knowledge persist side by
side, albeit with the intersection approach being more popular, is that they
appeal to different intuitions. Specifically, the issue is whether agents share
information in a way that can be expressed in epistemic logic. Suppose that
a considers a world s1 possible but s2 impossible, while b considers s1 to be
impossible and s2 to be possible, but that s1 and s2 are not distinguishable by
any formula of epistemic logic. Can a and b, when working together, discover
that neither s1 nor s2 is possible?

The full communication approach says “no, they cannot exclude s1 and
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s2”. After all, while a does not consider s2 to be possible, there is nothing
they can say to b that would communicate this impossibility, and b is likewise
incapable of communicating the impossibility of s1. The intersection approach,
on the other hand, says “yes, they can exclude s1 and s2”. Even if neither of
them can express the difference (in epistemic logic, at least), a knows that s2
is impossible and b knows that s1 is impossible, so together they know both
are impossible. Perhaps they communicate this impossibility to each other in
a language other than epistemic logic, such as first-order logic. Perhaps they
simply point at the worlds they consider impossible. Perhaps they perform
a Vulcan mind-meld, or somehow merge their databases or neural networks.
What matters, to the intersection approach, is not how the agents share their
information, but only that the agents possess the required information.

In this paper, we will not try to settle the debate in favour of one vari-
ant. On the contrary, we will introduce several further variants of distributed
knowledge. This is because, in addition to the form of information sharing
(formulas or mind-meld) which makes the difference between the intersection
and full communication variants, there are several more questions one can ask
about how distributed knowledge is established.

How much information do the agents share? Do they share information
simultaneously, or is there an order? Are all agents required to know that φ is
true after the knowledge sharing, or does it suffice if one agent knows φ?

Different answers to these questions may lead to different notions of dis-
tributed knowledge. That is not to say that all possible combinations lead
to different kinds of distributed knowledge. For example, suppose that each
agent shares a single proposition known to that agent. Then it does not matter
whether the agents share simultaneously or in order (Proposition 4.4), and if
one of the agents can learn φ then all of them can learn it (Proposition 4.3).
But in other cases, the difference does matter.

We will consider 12 possible definitions of distributed knowledge. One of
these, which we label (∩, ϵ, ϵ, ∀), is the intersection definition of distributed
knowledge. None of our definitions is exactly the same as the full communi-
cation definition, but the variant that we label (L0,⊙,⇑,∀) is equivalent to
full communication (Proposition 3.2). 1 To the best of our knowledge, other
definitions of distributed knowledge in our taxonomy have not been considered
in the literature before.

After introducing the basic technical definitions in Section 2, we will define
all variants of distributed knowledge in Section 3 and compare them to the
existing approaches. Then we compare the introduced definitions of distributed
knowledge to each other in Section 4. Finally, we conclude and outline the
directions for further research in Section 5.

1 Furthermore, several other variants are equivalent to (L0,⊙,⇑, ∀), and therefore, by tran-
sitivity, also equivalent to full communication.
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2 Basic Definitions

Each of the variants of distributed knowledge that we consider will use the
same language, which is basic epistemic logic with an additional operator DG,
indicating distributed knowledge among group G.

Definition 2.1 Let P be a countable set of propositional atoms and A a finite
set of agents. The language L is given by the following normal form

L ∋ φ ::= p | ¬φ | (φ ∨ φ) | □aφ | DGφ

where p ∈ P, a ∈ A and ∅ ≠ G ⊆ A. We denote the fragment of L that
does not contain DG by L0. We omit parentheses where this should not cause
confusion.

We use ∧,→,↔ and ♢a in the usual way as abbreviations. Similarly, we
use

∧
and

∨
for n-ary conjunction and disjunction, respectively.

Because we are describing (distributed) knowledge, we will use S5 models.
We should stress, however, that our results also hold for K models.

Definition 2.2 A model M is a tuple (S,∼, V ), where S is a non-empty set
of worlds, ∼: A → 2S×S assigns to each agent a ∈ A an equivalence relation
∼a⊆ S × S and V : P → 2S is the valuation function. If necessary, we will
refer to the elements of the tuple as SM, ∼M, and VM. A pointed model is a
pair M, s where s is a world of M.

All operators other than DG are given their normal semantics. The seman-
tics of L0 is therefore as follows.

Definition 2.3 Let M = (S,∼, V ) be a model and s ∈ S. Then
M, s |= p iff s ∈ V (p)
M, s |= ¬φ iff M, s ̸|= φ
M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ
M, s |= □aφ iff M, t |= φ for all t such that s ∼a t.

For DG, the semantics will depend on the type of distributed knowledge
under consideration, which we discuss in the next section.

In several of the proofs throughout this paper, we will make use of the
concept of Q-bisimilarity, where Q ⊆ P.

Definition 2.4 Let Q ⊆ P, and M = (SM,∼M, VM) and N = (SN ,∼N ,
V N ) be models. We say that M and N are Q-bisimilar (denoted M ≈Q N ) if
there is a non-empty relation B ⊆ SM × SN , called Q-bisimulation, such that
for all B(s, t), the following conditions are satisfied:

Atoms for all p ∈ Q: s ∈ VM(p) if and only if t ∈ V N (p),

Forth for all a ∈ A and u ∈ SM such that s ∼M
a u, there is a v ∈ SN such

that t ∼N
a v and B(u, v),

Back for all a ∈ A and v ∈ SN such that t ∼N
a v, there is a u ∈ SM such that

s ∼M
a u and B(u, v).
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We say that M, s and N , t are Q-bisimilar and denote this by M, s ≈Q N , t if
there is a Q-bisimulation linking worlds s and t.

In the paper, we will make use of the classic result that bisimilar models
satisfy the same formulas of epistemic logic.

Theorem 2.5 Given M, s and N , t, if M, s ≈Q N , t, then for all φ ∈ L0 that
include atoms only from Q, we have that M, s |= φ if and only if N , t |= φ.

3 Varieties of distributed knowledge

In Section 1 we mentioned a number of questions regarding the exact workings
of distributed knowledge. Here we discuss these questions in more detail, and
use the potential answers to define types of distributed knowledge. Before we
get into these details, however, we should remark on one aspect of distributed
knowledge that will hold for every variant, namely that distributed knowledge
is backward-looking.

In both the intersection and full communication definitions of distributed
knowledge, a proposition φ is distributed knowledge among G if, by combining
their knowledge, G can discover that φ was true before they combined their
knowledge. 2 In this paper we also follow this tradition. The past tense is im-
portant because φ may contain claims that certain group members are ignorant
of some fact, and this ignorance can be broken when agents in G share their
knowledge.

For example, let φ be the famous Moore-sentence p ∧ ¬□ap, i.e., “p is true
but a does not know that p is true.” This sentence cannot be known by agent
a, yet it can be distributed knowledge between a and b. Perhaps a knows that
¬□ap while b knows that p. When a and b combine their knowledge, they will
learn that p ∧ ¬□ap used to be true, but that very same communication will
render the formula false, since a will learn that p is true.

Because of this backward looking nature, distributed knowledge is a static
operator, as opposed to the dynamic operators from dynamic epistemic logic
(DEL) [17]. A dynamic take on distributed knowledge is also possible, and
would likely correspond to what agents may learn through communication with
each other 3 . Some of the known approaches include a single agent sharing all
her information with everyone [5], a group of agents sharing everything they
know among themselves [4,6], topic-based communication within a group of
agents [9], and various forms of public communication by agents and their
effects [2,1,3]. While such dynamic treatment of distributed knowledge is in-
teresting, it is outside the scope of this contribution.

We now continue with a detailed discussion of each of our questions regard-
ing the meaning of distributed knowledge.

2 See [4] for a more thorough discussion of this aspect of distributed knowledge.
3 As with static distributed knowledge, we need to account for many small but important
implementation decisions, for example the extent to which agents that are not part of the
group will be aware of the discussion among the group members.
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Forms of information The first important question is the form of informa-
tion shared by the group members in their attempt to establish knowledge of a
proposition. We consider two answers to this question. Firstly, agents may be
able to share formulas of L0 that they know. So if □aψ holds, for some ψ ∈ L0

and a ∈ G, then in a group discussion among G, agent a can contribute ψ. The
restriction to formulas that agents actually know arises from the intuition that
distributed knowledge is about combining individual knowledge rather than
arbitrary formulas.

The alternative is that the agents may be sharing information in a way that
is either entirely non-lingual, or at least phrased in a language stronger than
L0. Importantly, such information sharing is not bound to respect bisimilarity
in the sense of Theorem 2.5 (see, e.g., [14]).

Note that we restrict ψ to L0, so the formulas that the agents can share in
their deliberation cannot include the DG operator. This is required in order
to avoid vicious circularity; if we allow the DG operator to be used during the
deliberations, there are situations where agents can learn φ if they combine their
knowledge, but only if that knowledge includes the fact that φ is distributed
knowledge. Hence φ would be distributed knowledge if and only if. . . φ is
distributed knowledge. As a result of this circularity, the semantics would
become underdetermined, i.e., there would be pointed models where both DGφ
and ¬DGφ are consistent with the semantics (see Appendix A).

Recall from the introduction that the intersection definition of distributed
knowledge assumes the non-lingual answer to this question, whereas the full
communication definition assumes the information being communicated is in
the form of L0 formulas.

Amount of information The next question is how much information the
agents share. In principle, any measure could be used here. For example, one
could imagine a situation where each agent has, say, 5 seconds to contribute
their share. Or perhaps agents are limited to statements of a given maximum
complexity.

Here, however, we will restrict ourselves to a coarser distinction: agents will
be able to share either a single formula, or an infinite set of formulas. Note
that since we are limiting only the amount of formulas, not their complexity,
it would not make sense to restrict to a given finite number of formulas, since
any finite number of formulas can be combined into one using conjunctions.

Note that this distinction only makes sense if information is shared as L0

formulas; if information is shared non-linguistically we do not have a sensible
measure of the amount of information shared.

Order and turn-taking Another consideration is whether the agents share
all information simultaneously, or in some order (with agents taking a single
turn if they share one formula, or multiple turns if they share a set of formulas).
This distinction is relevant because agents can only share formulas that they
know; if the agents share their information in some order, then the later agents
may be able to contribute some formulas that they did not know initially but
that they have come to know based on the information provided by the agents
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before them. Again, this distinction only works if agents share their information
in the form of formulas.

Collective or individual success Finally, we can distinguish between a type
of distributed knowledge where all group members need to learn the truth of a
formula and a type where only one group member needs to learn it. In other
words, if there is a possible communication between a and b that would result in
a knowing φ while b remains ignorant of it, would φ be distributed knowledge?

Equivalence among variants Not all of the combinations of answers to
questions from the previous section make sense. Still, the answers allow us to
define 12 variations of distributed knowledge.

We should stress, however, that not all these variations are truly different.
For example, suppose that, in their communication, every agent shares a single
formula, and they do so simultaneously. Then it is possible for the agents
to communicate in such a way that a single agent learns φ if and only if it
is possible for them to communicate in a way where all agents learn φ (see
Proposition 4.2).

In fact, our main contributions in this paper are (1) formal definitions of
the various kinds of distributed knowledge, and (2) the results on which of the
variants are equivalent to each other.

3.1 Semantics for distributed knowledge

In our taxonomy, a type of distributed knowledge can be identified by the form
of information shared, the amount of information, whether there is an order,
and how many agents need to learn the target formula. A type τ is therefore
a tuple τ = (f, a, o, q), where f ∈ {∩,L0} indicates whether the information
is presented in the form of formulas (L0) or not (∩), a ∈ {⊙,•, ϵ} indicates
whether a single formula is shared (⊙) or a set of formulas (•), while a = ϵ is
used for the case where f = ∩ and therefore no formulas are shared at all. The
parameter o ∈ {⇑, ω,Ω, ϵ} indicates whether the agents share their knowledge
simultaneously (⇑), in a sequence with a length α bounded by the first infinite
ordinal (ω), in a sequence that can have any ordinal α as its length (Ω), or
whether f = ∩ and therefore the question of an order doesn’t make sense (ϵ).
Finally, q ∈ {∃,∀} indicates whether at least one agent must learn φ (∃) or all
of them must learn it (∀).

We use f(τ), a(τ), o(τ) and q(τ) to denote the values of f , a, o and q,
respectively, in τ . Each type τ of distributed knowledge induces semantics for
the language L, which we denote by |=τ .

The main idea of each of the semantics is that φ is distributed knowledge
among G if there is some way for G to share information among themselves
that would result in them learning the truth of φ. Communication by G will
change the current information state, which is encoded by the set ∼ of rela-
tions, into a new information state ∼′. Often there are different things that
G could communicate, and each such possible communication will lead to a
new information state. Hence we will, in general, need to consider not one new
information state ∼′ but a set of such information states.
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We will denote the set of information states that can be reached by group
G, when discussing in world s, using the communication type τ , as RG,s,τ .

The semantics for the distributed knowledge operator are then given by
M, s |=τ DGφ iff

∃ ∼′∈ RG,s,τ∃a ∈ G : M, t |= φ for all t such that s ∼′
a t

if q(τ) = ∃, or M, s |=τ DGφ iff

∃ ∼′∈ RG,s,τ∀a ∈ G : M, t |= φ for all t such that s ∼′
a t

if q(τ) = ∀.
We should note that, while the agents are generally not required to share

as much information as they can, distributed knowledge is about whether the
agents are able to achieve knowledge of φ. The more information is shared, the
more likely it is that the agents will learn φ. 4 In particular, if there is a unique
“maximal communication”, it suffices to consider only that communication.

For example, in the intersection definition of distributed knowledge, agents
are capable of explaining, in a non-linguistic way, exactly which worlds they
consider possible. Conceptually, it seems reasonable that agents could, instead
of communicating their exact set of possible worlds, communicate a superset of
it. We need not consider this possibility, however, since sharing the exact set of
worlds they consider possible is the optimal strategy. In this case, it therefore
suffices to consider the singleton set RG,s,τ = {∼′} where, for every a ∈ G,
∼′
a=

⋂
b∈G ∼b.

In other cases there may be no single most informative communication,
so we cannot restrict ourselves to a single information state in this way. For
example, if every agent can communicate a single formula that is known to
them, there is not, in general, a single most informative formula for them to
state. For every formula ψG =

∧
a∈G ψa with the property that M, s |= □aψa

for every a, we therefore need to consider the information state ∼ψG .
Based on the considerations from the previous section, we can define the

following 12 variants of distributed knowledge (see Figure 1 for the full list
of variants and their relative strength). Recall, however, that some of these
variants are equivalent to one another.

Non-linguistic sharing Suppose information is shared non-linguistically.
Then our method of restricting the amount of information shared is inapplica-
ble. Furthermore, because we do not know how information is shared we also
cannot speak of an ordering in which information is presented.

The only further distinction that is available is whether one agent needs to
learn the formula or all of them do. We therefore need to consider the variants
τ = (∩, ϵ, ϵ, ∃) and τ = (∩, ϵ, ϵ, ∀), respectively.

4 This does rely on the fact that we are looking at static communication, i.e. φ is distributed
knowledge if the agents can learn that φ used to be true. In dynamic communication, where
agents are trying to learn that φ is true, sharing as much information as possible may not be
an optimal strategy since φ can contain ignorance conditions that become false when more
information is shared (e.g. the Moore formula).
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As stated above, for either of these cases we have RG,s,α = {∼′} where
∼′
a=

⋂
b∈G ∼b. Note, also, that at this point it is already easy to see that

(∩, ϵ, ϵ, ∃) and (∩, ϵ, ϵ, ∀) are equivalent. This is because all agents end up with
the same accessibility relation, so if one of them learns φ then they all do.

Proposition 3.1 M, s |=(∩,ϵ,ϵ,∃) DGφ if and only if M, s |=(∩,ϵ,ϵ,∀) DGφ.

Simultaneous sharing of formulas Suppose the information sharing hap-
pens by the agents stating one or more formulas each, and that this hap-
pens simultaneously. So we are considering the variants τ ∈ {(L0,⊙,⇑,∃),
(L0,⊙,⇑,∀), (L0,•,⇑,∃), (L0,•,⇑,∀)}, where the first two assume that each
agent contributes a single formula while the last two let each agent contribute
a (potentially infinite) set of formulas.

We specify which information states the agents can achieve by sharing in-
formation in two steps. First, we specify all of the ways the agents could share
information. In effect, this acts as a set of indices used to identify the var-
ious outcome information states. Then, for each index we specify what that
outcome information state is.

The important condition on information sharing is that each agent must
contribute one or more formulas that they know. 5 Hence if τ = (L0,⊙,⇑,∃)
or τ = (L0,⊙,⇑,∀) then

RG,s,τ = {∼{ψa|a∈G}| ∀a ∈ G : ψa ∈ L0 and M, s |= □aψa}

and

∼{ψa|a∈G}
b = {(x, y) ∈ S × S | (x, y) ∈∼b and M, y |=

∧
a∈G

ψa}.

If each agent shares a set of formulas, i.e. if τ = (L0,•,⇑,∃) or τ =
(L0,•,⇑,∀), then they need to know each of the formulas they provide, so

RG,s,τ = {∼{Ψa|a∈G}| ∀a ∈ G : Ψa ⊆ L0 and ∀ψ ∈ Ψa : M, s |= □aψ}

and

∼{Ψa|a∈G}
b = {(x, y) ∈ S × S | (x, y) ∈∼b and ∀a∀ψ ∈ Ψa : M, y |= ψ}.

Taking turns Suppose that, as in the previous case, agents share one or
more formulas, but now they do so sequentially. The crucial difference with
simultaneous communication is that in the sequential case agents can state a
formula that they only know because of the information provided to them by
the previous speakers.

Assume, for example, that a knows p and b knows p → q. If a speaks first
and tells b that p is true, b can then, when it is their turn to speak, say that q
is true, which they only know because a told them p.

5 Note that we can assume without loss of generality that every agent shares at least one
formula because agents can always use the uninformative formula ⊤ that is known by every-
one.



10 Varieties of Distributed Knowledge

If every agent shares exactly one formula, then the sequential sharing of
information means every agent takes a single turn, where the later agents can
use the information provided by the earlier ones.

If each agent provides a set of formulas, we still need to specify the or-
der among the agents, but this will generally have to be an infinite order.
Note that we do not have to assume that this order is “fair”, since agents can
skip their turn by providing the trivial formula ⊤. What is potentially im-
portant, however, is whether the turn-taking is limited to ω rounds (where
ω is the first infinite ordinal), or whether any ordinal can be used. This
gives us six variants: τ ∈ {(L0,⊙, ω, ∃), (L0,⊙, ω, ∀), (L0,•, ω,∃), (L0,•, ω, ∀),
(L0,•,Ω,∃), (L0,•,Ω,∀)}. Observe that we do not consider types (L0,⊙,Ω,∀)
and (L0,⊙,Ω,∃) since a finite number of agents communicating one formula
each will never step on the trans-finite territory.

Before we can define the possible effects of sequential communication, we
first need a little bit more notation. We want to consider finite sequences,
infinite sequences, and even trans-finite sequences of statements. Therefore, let
α be any ordinal. At each ordinal δ < α, one of the agents will state the truth
of one formula; let us write f(δ) for the agent and g(δ) for the formula. As
α can be considered to be identical to the set of all ordinals less than it, this
means f and g are functions of type f : α→ G and g : α→ L0.

Agent f(δ) needs to know formula g(δ) at time δ, since otherwise they would
not be able to state the truth of the formula. As such, we need to keep track
of the information state at each point in the process. Formally, this means
that we are interested in the final information state ∼α,f,g, but we also need to
define ∼α,f,g,δ for δ < α, which represents the information state immediately
after the announcement that takes place at time δ. We do this by defining

∼α,f,g,0a = {(x, y) ∈ S × S | (x, y) ∈∼a and M, y |= g(0)}

and

∼α,f,g,δa = {(x, y) ∈ S × S | (x, y) ∈
⋂
ϵ<δ

∼α,f,g,ϵa and M, y |= g(δ)}

for 0 < δ < α. Finally, we define ∼α,f,ga =
⋂
δ<α ∼α,f,g,δa .

Note that ∼α,f,g,δ is the information state after the communication at time
δ, and that there is such a communication at every time δ < α. Hence ∼α,f,g,0a

is generally not identical to ∼a, since the latter represents the information state
before any communication takes place.

Furthermore, communication only happens at δ < α. Hence, in particular,
if α = ω then communication takes place at every finite time step, but there is
no “infinity-th” communication at ω.

Importantly, the definition of ∼α,f,g does not check whether agent f(δ)
actually knows g(δ) at time δ. So while the definition determines the effect that
a given communication sequence would have, it does not determine whether the
agents are actually capable of saying the formulas included in the sequence. For
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this, we need to look at another property that we will refer to as correctness.
We say that α, f and g are correct for group G and world s if

∀s′ : if (s, s′) ∈∼f(δ) ∩
⋂
ϵ<δ

∼α,f,g,ϵf(δ) , then M, s′ |= g(δ).

In other words, if s′ was accessible originally (for agent f(δ)) and has not been
excluded by any of the preceding statements at times ϵ < δ, then g(δ) must be
true in s′.

Now, we can formally define RG,s,τ for the sequential types of communica-
tion. If τ = (L0,⊙, ω,∃) or τ = (L0,⊙, ω,∀), then we require every agent to
have exactly one turn, and hence α = |G|. Moreover, f is a bijection, so

RG,s,τ = {∼|G|,f,g| f is a bijection and |G|, f and g are correct for G, s}.

If τ = (L0,•, ω, ∃) or τ = (L0,•, ω, ∀), then we take α = ω, i.e., we allow
infinite statements, but there is no “infinity-th statement”. We could demand
that the turn-taking by the agents is “fair” in some way, but that is pointless; if
there is an unfair turn-taking the agents could use for their communication, this
can be transformed into a fair one where some agents give the trivial statement
⊤. As such, we get

RG,s,τ = {∼ω,f,g| ω, f and g are correct for G, s}.

Finally, we can allow any ordinal number α of statements. If τ = (L0,•,Ω,∃)
or τ = (L0,•,Ω,∀), then

RG,s,τ = {∼α,f,g| α, f and g are correct for G, s}.

Note that all RG,s,τ ’s are sets, and we essentially quantify over all possible
sequences of announcements, and, according to the definition of distributed
knowledge, it is enough that at least one knowledge state induced by any se-
quence satisfies φ.

3.2 Connections to the traditional definitions

Our variant (∩, ϵ, ϵ, ∀) of distributed knowledge is, modulo some notation, iden-
tical to the traditional definition of distributed knowledge based on intersec-
tion. Our variant that most closely matches the full communication definition
of distributed knowledge is (L0,⊙,⇑,∀).

In fact, as mentioned in the introduction, (L0,⊙,⇑,∀) is equivalent to the
full communication definition, but this is not entirely obvious and therefore
requires a short proof.

Proposition 3.2 We have

M, s |=(L0,⊙,⇑,∀) DGφ

if and only if
{ψ ∈ L0 | ∃a ∈ G : M, s |= □aψ} |= φ.
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Proof. Suppose M, s |=(L0,⊙,⇑,∀) DGφ. Then there are {ψb | b ∈ G} such
that (1) for all b ∈ G, M, s |= □bψb and (2) for all a ∈ G and every s′, if

s ∼{ψb|b∈G}
a s′ then M, s′ |= φ. Furthermore, s ∼{ψb|b∈G}

a s′ holds if and only
if s ∼a s′ and M, s′ |=

∧
{ψb | b ∈ G}.

This implies that for every s′, if s ∼a s′, then M, s′ |=
∧
{ψb | b ∈ G} → φ.

Furthermore, since M, s |= □aψa, we also have M, s′ |= ψa. It follows that
M, s |= □a(ψa ∧ (

∧
{ψb | b ∈ G} → φ)).

Now, note that {ψa ∧ (
∧
{ψb | b ∈ G} → φ) | a ∈ G} |= φ. As such,

{ψ | ∃a ∈ G : M, s |= □aψ} |= φ.
For the other direction, suppose that {ψ | ∃a ∈ G : M, s |= □aψ} |= φ.

Since epistemic logic is compact, there is a finite Ψ ⊆ {ψ | ∃a ∈ G : M, s |=
□aψ} such that Ψ |= φ. For every a ∈ G, let ψa =

∧
{ψ ∈ Ψ | M, s |= □aψ}.

We now have M, s |= □aψa for every a ∈ G. Furthermore, since Ψ |= φ,
we also have M, s′ |=

∧
{ψa | a ∈ G} → φ for every s′ ∈ S such that s ∼a s′.

It follows that M, s |=(L0,⊙,⇑,∀) DGφ. 2

Note that the proof critically depends on the compactness of epistemic logic.
If we used a non-compact base logic, such as epistemic logic with common
knowledge, the equivalence would not hold.

4 Relative Strength

Now that we have formally defined the various types of distributed knowledge
that we are interested in, we can investigate their properties. In particular, we
are interested in which variants imply each other.

In most cases, it is clear that one variant τ1 is at least as strong as an-
other variant τ2, in the sense that M, s |=τ1 DGφ implies M, s |=τ2 DGφ. In
particular, it is easy to see that the following hold.

Proposition 4.1

• For every τ , M, s |=τ DGφ implies M, s |=(∩,ϵ,ϵ,∀) DGφ.

• For every f , a and o, M, s |=(f,a,o,∀) DGφ implies M, s |=(f,a,o,∃) DGφ.

• For all o and q, M, s |=(L0,⊙,o,q) DGφ implies M, s |=(L0,•,o,q) DGφ.

• For all a and q, M, s |=(L0,a,⇑,q) DGφ implies M, s |=(L0,a,ω,q) DGφ.
Furthermore, M, s |=(L0,•,ω,q) DGφ implies M, s |=(L0,•,Ω,q) DGφ.

Furthermore, it follows from [16] that (∩, ϵ, ϵ, ∀) and (∩, ϵ, ϵ, ∃) do not imply
(L0,⊙,⇑,∀).This, however, leaves many comparisons open, which we solve here.

4.1 Single formula

First, let us compare variants that use a single formula. In particular, we will
show that all the four variants, i.e. (L0,⊙,⇑,∃), (L0,⊙,⇑,∀), (L0,⊙, ω, ∃), and
(L0,⊙, ω, ∀), are equivalent

Proposition 4.2 M, s |=(L0,⊙,⇑,∃) DGφ if and only if M, s |=(L0,⊙,⇑,∀) DGφ.

Proof. We know from Proposition 4.1 that “all” implies “single”, so it suffices
to show that the reverse also holds. Suppose, therefore, that M, s |=(L0,⊙,⇑,∃)



Galimullin and Kuijer 13

DGφ. Let {ψa | a ∈ G} be the witnessing formulas that, if communicated
among the group, would make one agent, let’s call them x, learn that φ is true.

This means that for every s′, if (s, s′) ∈∼x and M, s′ |=
∧
a∈G ψa, then

M, s′ |= φ. This implies that for every (s, s′) ∈∼x, we have M, s′ |=∧
a∈G ψa → φ. Furthermore, since x was able to provide the formula ψx, we

also have M, s′ |= ψx for each such s′. Hence M, s |= □x(ψx∧(
∧
a∈G ψa → φ)).

Consider then the alternative communication {ψ′
a | a ∈ G} where ψ′

a = ψa
for a ̸= x and ψ′

x = ψx ∧ (
∧
a∈G ψa → φ). For every agent a ∈ G and

every s′, if (s, s′) ∈∼a and M, s′ |=
∧
a∈G ψ

′
a, we then have, in particular,

M, s′ |=
∧
a∈G ψa and M, s′ |=

∧
a∈G ψa → φ, and hence M, s′ |= φ. This

implies that all agents learn φ, and therefore M, s |=(L0,⊙,⇑,∀) DGφ. 2

In effect, the single agent x that learns φ can include hypothetical reasoning
in the formula that they provide to the group. Instead of saying “ψx is true”,
they can say “ψx is true, and if you were to tell me {ψa | a ∈ G}, then I would
learn that φ is true”. This suffices for all the other agents to learn the truth of
φ, if all a ̸= x do indeed provide formulas ψa. The same trick can be used in
the sequential version.

Proposition 4.3 M, s |=(L0,⊙,ω,∃) DGφ if and only if M, s |=(L0,⊙,ω,∀) DGφ.

Proof. Let (a1, · · · , an) be an ordering of G such that ai takes their turn before
aj iff i < j, and let (ψ1, · · · , ψn) be the corresponding formulas that witness
M, s |=(L0,⊙,ω,∃) DGφ, where ax is the agent that learns φ.

Then ax already knows, before the communication starts, that
∧
{ψi | 1 ≤

i ≤ n} → φ. Furthermore, once it is their turn, they have also learned that
ψax . Hence they could instead say ψ′

ax = ψax ∧ (
∧
{ψi | 1 ≤ i ≤ n} → φ),

which would result in all agents learning φ. Note that since we work with the
static notion of distributed knowledge, rather than a dynamic one, knowledge
of agents is monotonic under announcements and they can always announce
their respective formulas. 2

Additionally, a similar kind of hypothetical reasoning can be used to remove
the reliance on sequential communication.

Proposition 4.4 M, s |=(L0,⊙,ω,∀) DGφ if and only if M, s |=(L0,⊙,⇑,∀) DGφ.

Proof. By Proposition 4.1, M, s |=(L0,⊙,⇑,∀) DGφ implies M, s |=(L0,⊙,ω,∀)
DGφ. Left to show is the other direction.

Suppose therefore that M, s |=(L0,⊙,ω,∀) DGφ, as witnessed by order
(a1, · · · , an) and formulas (ψ1, · · · , ψn). Then, at stage i, the preceding com-
munications {ψj | j < i} suffice for agent i to learn that ψi holds, in the sense
that for all s′, if (s, s′) ∈∼ai and M, s′ |=

∧
j<i ψj then M, s′ |= ψi.

It follows that, before the communication started, ai already knew∧
j<i ψj → ψi. So, in the simultaneous version, ai could provide that formula.
Furthermore, collectively, communicating {ψi | 1 ≤ i ≤ n} has the same

effect as communicating {
∧
j<i ψj → ψi | 1 ≤ i ≤ n}. So we also have

M, s |=(L0,⊙,⇑,∀) DGφ. 2
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The equivalence of other pairs of the single formula variants follows imme-
diately from the transitivity of the equivalence relation.

4.2 Sets of formulas

Let us now consider the variants where each agent may provide a set of formulas.
As a first step, we will show that none of them imply the single formula variants.
For this, it suffices to show that any one of the single formula variants is not
implied by the strongest set variant (i.e., the set variant that is the hardest to
satisfy, which is (L0,•,⇑,∀)).
Proposition 4.5 M, s |=(L0,•,⇑,∀) DGφ does not necessarily imply that
M, s |=(L0,⊙,⇑,∀) DGφ.

Proof. (Sketch; full proof in Appendix B). Suppose that, for every i ∈ N,
agent a knows whether pi holds while b knows whether qi holds. Furthermore,
suppose both agents know that r is true if and only if, for every i, pi ↔ qi
holds. Consider the case where all pi and qi are, in fact, false, so r holds.

Under the (L0,•,⇑,∀) definition, we then have D{a,b}r. After all, a can
tell b that all pi are false, while b can tell a that all qi are false. This suffices
for both of them to discover that r is true.

Under the (L0,⊙,⇑,∀) definition, however, we have ¬D{a,b}r. This is be-
cause the agents can only learn that r is true if pi ↔ qi for all i, which cannot
be expressed in a finite set of formulas. 2

Next, let us note that (L0,•,⇑,∃) does not imply (L0,•,⇑,∀).
Proposition 4.6 M, s |=(L0,•,⇑,∃) DGφ does not necessarily imply
M, s |=(L0,•,⇑,∀) DGφ.

Proof. (Sketch; full proof in Appendix B). As in Proposition 4.5, suppose a
knows whether pi is true and b knows whether qi is true. Now, however, suppose
that b knows that whether r is true depends on the parity of the number of
indices i such that pi and qi differ in value. Specifically, b knows that r is true
if that number is even, while a is uncertain whether r holds if the number is
even, or if it is odd. Both agents know r is false if pi and qi differ infinitely
often. As before, suppose that all pi and qi happen to be false.

With the (L0,•,⇑,∃) definition of distributed knowledge, we then have
D{a,b}r. This is because, when a tells b that all pi are false, agent b will learn
that there are 0 indices where pi and qi differ, so r is true.

Yet r is not distributed knowledge under the (L0,•,⇑,∀) definition of dis-
tributed knowledge, since only b can learn that r is true. The reason a can’t
learn this is that “r is true iff there is an even number of i such that pi and qi
disagree” cannot be expressed in epistemic logic. Furthermore, while b learns
that r is true once the communication is complete, (L0,•,⇑,∀) requires simul-
taneous communication, so b cannot simply say that r is true. 2

What does not make a difference, however, is simultaneous statements or
ω-sequential ones.
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Proposition 4.7 M, s |=(L0,•,ω,∃) DGφ iff M, s |=(L0,•,⇑,∃) DGφ, and
M, s |=(L0,•,ω,∀) DGφ iff M, s |=(L0,•,⇑,∀) DGφ

Proof. At every step in the ω-sequential communication, when ψi is stated, a
finite set {ψj | j < i} preceded it. We can replace sequential announcement of
{ψi | i ∈ N} by simultaneous announcement of {

∧
j<i ψj → ψi | i ∈ N}. 2

The Ω-sequential variant, on the other hand, is strictly weaker than ω-
sequential or simultaneous ones.

Proposition 4.8 M, s |=(L0,•,Ω,∃) DGφ does not necessarily imply
M, s |=(L0,•,⇑,∃) DGφ.

Proof. (Sketch; full proof in Appendix B). Suppose that a knows, for all i and
j, whether pi,j and qi,j hold. Furthermore, suppose that the value of xi depends
on the number of j such that pi,j differs from qi,j , in a way known to b but not
to a and c, and that this dependence cannot be expressed in epistemic logic.
(See the full proof in the appendix for one way to create such an inexpressible
dependence.) Similarly, yi depends on the number of j such that pi,j and qi,j
differ, in an inexpressible way that is known to c but not to a and b. Finally,
all three agents know that z is true iff there is an even number of i such that
xi and yi differ.

Then if z is true, that is distributed knowledge using the (L0,•,Ω,∃) defi-
nition, since a can tell b and c which pi,j and qi,j hold, at which point they can
say which xi and yi are true, allowing all of them to determine that z holds.

With the (L0,•,⇑,∃) definition z is not distributed knowledge, however.
This is because, in order for any of the three agents to learn that z is true, all
three agents need to contribute their information. But b and c cannot initially
contribute any non-trivial formulas, since their only private information is the
way in which xi or yj depends on the values of pi,j and qi,j , and this dependence
is not expressible in epistemic logic.

It is only after a has informed b and c about the values of every pi,j and qi,j
that b and c can apply their knowledge in order to determine the truth of xi
and yj , respectively, which they can then communicate to the other agents. So
a first needs to contribute at least ω formulas before b and c can get involved,
which is not possible if τ = (L0,•,⇑,∃). 2

However, if we allow any ordinal number of communication steps, the dif-
ference between a single agent learning the formula or all of them doing so
disappears.

Proposition 4.9 M, s |=(L0,•,Ω,∃) DGφ if and only if M, s |=(L0,•,Ω,∀) DGφ.

Proof. Suppose that M, s |=(L0,•,Ω,∃) DGφ. So there is a sequence of com-
munications of length α after which one agent a knows φ. Now, consider the
sequence of length α+ 1 where, in the last step, agent a states that φ is true.
This suffices for all agents to learn that φ is true. 2

The above suffices to determine the comparative strength of each of the
variants we discussed.
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5 Discussion

We have considered 12 natural interpretations of the idea behind distributed
knowledge. For these interpretations, we have analysed which ones are equiv-
alent to each other, and which ones are different. The complete landscape of
distributed knowledge is shown in Figure 1.

(∩, ϵ, ϵ, ∃) (∩, ϵ, ϵ, ∀)

(L0,•,Ω,∃) (L0,•,Ω,∀)

(L0,⊙, ω, ∃) (L0,⊙, ω, ∀) (L0,•, ω,∀) (L0,•, ω, ∃)

(L0,⊙,⇑,∃) (L0,⊙,⇑,∀) (L0,•,⇑,∀) (L0,•,⇑,∃)

NL:

SeqΩ:

Seqω:

Sim:

Fig. 1. The expressivity landscape of distributed knowledge, where ‘NL’ stands for
‘non-linguistic sharing’, ‘SeqΩ’ denotes unlimited sequential sharing, ‘Seqω’ stands
for sequential sharing limited to ordinal ω, and ‘Sim’ denotes simultaneous sharing.
Equivalent variations of distributed knowledge are enclosed in a box. Arrows point
from stronger variants to weaker ones. Some arrows that follow from transitivity have
been omitted for the sake of clarity.

Out of all variants of distributed knowledge, only the classic one (i.e.
(∩, ϵ, ϵ, ∀) and (∩, ϵ, ϵ, ∃) in our taxonomy) was axiomatised [8,15]. The task of
providing axiomatisations for the remaining variants seems to be both colossal
and irresistibly tempting, and we thus leave it for future work.

Acknowledgements

A preliminary version of this work has benefited from discussion with Fernando
R. Velázquez-Quesada. We would also like to thank the anonymous reviewers
of AiML for their attention to details and constructive criticism that helped us
to improve the presentation of this work.

Appendix

A Vicious Circularity

Suppose that we define the type (L,⊙,⇑,∀) in the same way as the type
(L0,⊙,⇑,∀), except that we now allow a ∈ G to contribute any formula ψa ∈ L
that they know, as opposed to any known formula from L0.

Clearly, such a definition would be circular. Here, we show that this cir-
cularity is vicious. More specifically, it is under-determined, in the sense that
there are models where bothDGφ and ¬DGφ are consistent with the semantics.

Proposition A.1 There are M, s and φ such that both M, s |=(L,⊙,⇑,∀) DGφ



Galimullin and Kuijer 17

and M, s |=(L,⊙,⇑,∀) ¬DGφ are consistent with the (L,⊙,⇑,∀)-semantics.

Proof. Consider the following model:

p
s1

p
s2

p
s3

t1 t2 t3

ab a ab

b

b

b

b

We will show that both M, s2 |= D{a,b}p and M, s2 ̸|= D{a,b}p are consistent
with the circular semantics. To see why this is the case, first note that the
semantics are extensional, so while there are infinitely many formulas it suf-
fices to consider only those that have different extensions. Let use denote the
extension of φ by JφK.

Let E be the set of all extension on this model. In order for E to be
consistent with the (L,⊙,⇑,∀)-semantics, it has to be “self-fulfilling”, in the
sense that, if we assume that E is the set of all extensions, then we should have
JφK ∈ E for all φ ∈ L, and for every e ∈ E there should be some φe ∈ L such
that JφeK = e.

We will show that there are two different sets of extensions that satisfy this
criterion: we can take E = 2S , in which case we have M, s2 |= D{a,b}p, and we
can take E = {∅, {s1, s2, s3}, {t1, t2, t3}, S}, in which case M, s2 ̸|= D{a,b}p.

Suppose therefore that E = 2S . It is immediate that JφK ∈ E for all φ ∈ L.
Left to show is that every extension e ∈ E is witnessed by some formula φe.
To this purpose, we first note that we have M, s2 |= D{a,b}p. This is because,
by assumption, E = 2S is the set of extensions, so there are formulas φ1 and
φ2 such that Jφ1K = {s2, t2} and Jφ2K = {s1, s2, t1}. Then M, s2 |= □aφ1 and
M, s2 |= □bφ2, so the agents can share φ1 and φ2. Furthermore, by putting
φ1 and φ2 together, the agents discover that s2 is the only possible world. As
p is true there, we have M, s2 |= D{a,b}p.

In every other world, D{a,b}p is false. For t1, t2 and t3 this follows from
the fact that distributed knowledge is truthful and p is false in t1, t2 and t3.
For s1 and s3 it follows from the fact that there is an ab-successor (t1 or t3,
respectively) where p is false. Since this world is an ab-successor, it can never
be excluded by any formula known to a or b, so the agents cannot exclude the
possibility of ¬p by combining their information.

We have now shown that the formula D{a,b}p uniquely identifies the world
s2. It follows that there are also formulas uniquely identifying every other
world:

s1: p ∧ ¬D{a,b}p ∧ ♢bD{a,b}p

s3: p ∧ ¬D{a,b}p ∧ ¬♢bD{a,b}p

t1: ¬p ∧ ♢bD{a,b}p
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t2: ¬p ∧ ♢aD{a,b}p

t3: ¬p ∧ ¬♢bD{a,b}p ∧ ¬♢aD{a,b}p.

Let us denote the formula for any world by φsi or φti . Any e ∈ E is the
extension of some disjunction of the relevant φsi and/or φti .

We have now shown that E = 2S being the set of extensions is consistent
with the semantics, and that we then have M, s2 |= D{a,b}p. The witnessing
formulas for this distributed knowledge had to have extensions {s2, t2} and
{s1, t1, s2}, so we can take φa = {φs2 ∨ φt2} and φb = {φs1 ∨ φs2 ∨ φt1}.

Next, we will show that it is consistent with the semantics to have E =
{∅, {s1, s2, s3}, {t1, t2, t3}, S}, in which case M, s2 ̸|= D{a,b}p. In this case, it
is easy to see that for every e ∈ E there is some φ such that e = JφK; we have
∅ = J⊥K, {s1, s2, s3} = JpK, {t1, t2, t3} = J¬pK and S = J⊤K.

Left to show, therefore, is that for every φ, we have JφK ∈ E. Because the si
are bisimilar to each other, as are the tj , the bisimulation-invariance of modal
logic implies that every ψ ∈ L0 will have one of the four extentions in E.

Furthermore, theDG operator cannot break this symmetry. This is because,
in every world, both a and b consider at least one ti world and at least one si
world possible. It follows that, for every world x, if M, x |= □aφ or M, x |=
□bφ, then JφK contains at least one ti and at least one si. Among the four
extensions in E, the only one with this property is S.

In their communication, a nor b can therefore only contribute formulas with
extension S, so neither of them provides non-trivial information. It follows that
φ is distributed knowledge if and only if one of the agents already knew φ before
the agents started sharing information. Hence M, x |= D{a,b}φ if and only if
M, x |= □aφ ∨ □bφ. It follows that, for every φ ∈ L there is a φ0 ∈ L0 such
that JφK = Jφ0K, which implies that JφK ∈ E.

Furthermore, because M, s2 ̸|= □ap ∨□bp, we have M, s2 ̸|= D{a,b}p. 2

B Full versions of proofs

Proposition B.1 M, s |=(L0,•,⇑,∀) DGφ does not necessarily imply that
M, s |=(L0,⊙,⇑,∀) DGφ.

Proof. Let M = (S,∼, V ), where S and ∼ are given as follows.

• S = {sx,y | (x, y) ∈ [0, 1)× [0, 1)},
• ∼a= {(sx,y, sx,y′)}
• ∼b= {(sx,y, sx′,y)}
Each x or y can be interpreted, written in binary notation, as a set of natural
numbers. Let us write ⌜x⌝ for the set of natural numbers represented by
x. Then we take V (pi) = {sx,y | i ∈ ⌜x⌝}, V (qi) = {sx,y | i ∈ ⌜y⌝} and
V (r) = {sx,y | x = y}.

In every world, a knows the x-coordinate while being uncertain about the
y-coordinate, while b is uncertain about the x-coordinate while knowing the y-
coordinate. Since the value of pi depends only on the x-coordinate, this means



Galimullin and Kuijer 19

that a knows, for every i, whether pi is true. Similarly, b knows whether qi is
true.

Furthermore, it is true throughout the model, and therefore known to both
agents, that r holds if and only if x = y, and therefore if and only if pi ↔ qi
for all i.

We have M, s0,0 |=(L0,•,⇑,∀) D{a,b}r, which is witnessed by the sets Ψa =
{¬pi | i ∈ N} and Ψb = {¬qi | i ∈ N}. After all, the only world where all pi
and qi are false is s0,0, where r is true.

Suppose now, towards a contradiction, that there are formulas ψa and ψb
that are known by their respective agents in s0,0, and that would allow the
agents to learn that r is true. Let Q be the set of atoms that occur in ψa and
ψb. Note that this is a finite set.

Because ψa is known by a, it must hold in every s0,y. Similarly, ψb holds
on every sx,0. Let x and y be such that x ̸= 0, y ̸= 0, ⌜x⌝ ∩Q = ⌜y⌝ ∩Q = ∅
and x ̸= y. Now, consider the world sx,y. We will show that it is Q-bisimilar
to both sx,0 and s0,y.

To this end, consider the relation ≈⊆ S × S, such that sx,y ≈ sx′,y′ iff
sx,y and sx′,y′ agree on Q ∪ {r}. We claim that this relation is a bisimulation.
Atomic agreement (when restricted to Q) between any two ≈-related worlds is
immediate from the construction. We show forth for b, the other cases can be
shown similarly.

So suppose that sx,y ≈ sx′,y′ and that sx,y ∼b su,v. Then y = v. Now, let
v′ = y′ and

• if u = v then u′ = v′,

• if u ̸= v then u′ is any number such that u′ ̸= v′ and ⌜u′⌝ ∩Q = ⌜u⌝ ∩Q.

Then su,v and su′,v′ agree on all atoms in Q ∪ {r}. Hence su,v ≈ su′,v′ by our
assumption. Furthermore, because y′ = v′, we also have sx′,y′ ∼b su′,v′ by the
construction of the model. So the forth condition is satisfied.

From this bisimilarity and the fact that M, sx,0 |= ψb, it follows that
M, sx,y |= ψb, and therefore also that M, s0,y |= ψb. For the same reason,
M, sx,0 |= ψa.

We can thus conclude that ψa and ψb cannot exclude the worlds sx,0 and
s0,y. In both these worlds r is false, so neither a nor b learns that r is true.
This contradicts our assumptions, so we have that M, s ̸|=(L0,⊙,⇑,∀) D{a,b}r.2

Proposition B.2 M, s |=(L0,•,⇑,∃) DGφ does not necessarily imply
M, s |=(L0,•,⇑,∀) DGφ.

Proof. Let

• S = {sx,y | (x, y) ∈ [0, 1)× [0, 1)} ∪ {tx,y | (x, y) ∈ [0, 1)× [0, 1)},
• ∼a= {(ux,y, vx,y′) | u, v ∈ {s, t}, x, y, y′ ∈ [0, 1)}
• ∼b= {(sx,y, sx′,y) | x, x′, y ∈ [0, 1)} ∪ {(tx,y, tx′,y) | x, x′, y ∈ [0, 1)}
• V (pi) = {sx,y | i ∈ ⌜x⌝} ∪ {tx,y | i ∈ ⌜x⌝}
• V (qi) = {sx,y | i ∈ ⌜y⌝} ∪ {tx,y | i ∈ ⌜y⌝}
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• V (r) = {sx,y | |⌜x⌝△⌜y⌝| is even} ∪ {tx,y | |⌜x⌝△⌜y⌝| is odd} 6

Essentially, the model consists of two grids, one with sx,y worlds and another
one with tx,y worlds. Agent a does not know which grid the current world
belongs to, while agent b does. On sx,y worlds r is true if the number atoms on
which x and y differs is even, whereas on tx,y worlds r is true if that number is
odd. As before, a knows the value of the pi atoms, while b knows the value of
qi. Finally, b can tell the difference between the s and t worlds, and therefore
the required parity, while a does not.

We have M, s0,0 |=(L0,•,⇑,∃) D{a,b}r because, as in the previous proof, a
can announce which pi hold and b can announce which qi hold, which suffices
for b to determine that r holds.

There is no way for a to learn that r is true by simultaneous statements,
however. This follows from another Q-bisimilarity argument. 2

Proposition B.3 M, s |=(L0,•,Ω,∃) DGφ does not necessarily imply
M, s |=(L0,•,⇑,∃) DGφ.

Proof. Let

S = {se,f,g | e : N× N× {0, 1} → {0, 1}
f : N → N
g : N → N}

and

• se,f,g ∼a se′,f ′,g′ iff e = e′,

• se,f,g ∼b se′,f ′,g′ iff f = f ′,

• se,f,g ∼c se′,f ′,g′ iff g = g′.

In other words, in se,f,g agent a knows e, agent b knows f and agent c knows
g.

Furthermore, for i, j ∈ N let

• V (pi,j) = {se,f,g | e(i, j, 0) = 1},
• V (qi,j) = {se,f,g | e(i, j, 1) = 1},
• V (xj) = {se,f,g | the number of indices i ∈ N s.t. e(i, j, 0) ̸= e(i, j, 1) is
divisible by f(j)}

• V (yj) = {se,f,g | the number of indices i ∈ N s.t. e(i, j, 0) ̸= e(i, j, 1) is
divisible by g(j)}

• V (z) = {se,f,g | there is an even number of indices j ∈ N s.t. exactly one of
xj , yj holds on se,f,g}
So e simply determines which pi,j and qi,j hold. The function f , meanwhile,

determines for each j the number, f(j), that must divide the amount of indices
i on which pi,j and qi,j are different, in order for xj to be true. Similarly,

6 For sets X and Y , the symmetric difference X△Y is defined as (X \ Y ) ∪ (Y \X).
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g determines the number of indices that must be different for yj to be true.
Finally, z holds if and only if xj and yj differ in value for an even number of
indices j.

It is now easy to see that for any se,f,g such that M, se,f,g |= z we have
M, se,f,g |=(L0,•,Ω,∃) D{a,b,c}z. The communication the agents can perform is
as follows:

• In the time steps before ω, agent a tells the other two exactly which pi,j and
qi,j hold.

• At time ω, agents b and c know which pi,j and qi,j hold. As a consequence,
b knows which xj hold while c knows which yj hold.

• In the time steps between ω and 2 × ω, agents b and c tell the other two
which xj and yj hold.

• At time 2× ω, all agents know exactly which xj and yj hold, and therefore
whether z holds.

• We assumed we were in a world where z is true, so the agents learn that z
is true.

Now, to show that M, se,f,g ̸|=(L0,•,⇑,∃) D{a,b,c}z.
The key observation here is that b and c cannot provide any non-trivial

announcements. Suppose towards a contradiction that M, se,f,g |= □bψb and
M, se′,f ′,g′ ̸|= ψb. Let Q be the set of atoms in ψb. Then there is some
se′′,f,g′′ that is Q-bisimilar to se′,f ′,g′ . But, by M, se,f,g |= □bψb, we have
M, se′′,f,g′′ |= ψb, which by bisimilarity implies M, se′,f ′,g′ |= ψb, contradicting
our assumption.

Hence the only announcements b can provide hold in every world of the
model, and are therefore uninformative. That c cannot make a non-trivial
announcement is shown similarly.

This means that only a can provide information, so after the communication
all worlds of the form se,f ′,g′ are still accessible. Each agent then still considers
both z worlds and ¬z worlds to be possible, so z is not distributed knowledge.2
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