Dynamic Epistemic Logic of Resource Bounded Information Mining Agents

Vitaliy Dolgorukov ${ }^{1}$

Rustam Galimullin ${ }^{2}$
${ }^{1}$ HSE University, Russia
${ }^{2}$ University of Bergen, Norway
${ }^{3}$ Utrecht University, Netherlands

Maksim Gladyshev ${ }^{3}$

AAMAS2024

Motivation

Reasoning about resource-bounded agents has drawn the attention of various MAS researchers recently and brings us closer to modelling real-life situations.

Motivation

Reasoning about resource-bounded agents has drawn the attention of various MAS researchers recently and brings us closer to modelling real-life situations.

- Different epistemic logics treat resources as various constraints on agents' rationality: non-omniscient agents, reasoners who take time to derive consequences of their knowledge, DEL-style logics with inferential actions that require spending resources, etc.

Motivation

Reasoning about resource-bounded agents has drawn the attention of various MAS researchers recently and brings us closer to modelling real-life situations.

- Different epistemic logics treat resources as various constraints on agents' rationality: non-omniscient agents, reasoners who take time to derive consequences of their knowledge, DEL-style logics with inferential actions that require spending resources, etc.
- Logics of strategic abilities, in which agents' actions are associated with costs. And thus state-to-state transitions require spending some resources.

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as
a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;
- agents have (non-negative) budgets;

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;
- agents have (non-negative) budgets;
- an agent may ask the question "Is formula A true?" and receive a correct answer (Yes or No). We call such actions 'queries';

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;
- agents have (non-negative) budgets;
- an agent may ask the question "Is formula A true?" and receive a correct answer (Yes or No). We call such actions 'queries';
- The answer is private, but the very fact of the query is public. For this reason we call it a logic of Semi-Public Queries (SPQ);

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;
- agents have (non-negative) budgets;
- an agent may ask the question "Is formula A true?" and receive a correct answer (Yes or No). We call such actions 'queries';
- The answer is private, but the very fact of the query is public. For this reason we call it a logic of Semi-Public Queries (SPQ);
- Then, we generalize it to group queries.

Introduction

In this work we treat agents as perfect reasoners, whose access to information might be constrained by their resources. We treat resources as a cost of some 'information mining' actions.

- (propositional) formulas have (non-negative) costs;
- agents have (non-negative) budgets;
- an agent may ask the question "Is formula A true?" and receive a correct answer (Yes or No). We call such actions 'queries';
- The answer is private, but the very fact of the query is public. For this reason we call it a logic of Semi-Public Queries (SPQ);
- Then, we generalize it to group queries.

Examples include medical tests, scientific experiments, database queries, etc.

Other Modelling Choices

- The cost of the same formula may be different for different agents and it can also be different across different states. Thus, the agent may be unaware of the cost of some formula for herself and for other agents as well.

Other Modelling Choices

- The cost of the same formula may be different for different agents and it can also be different across different states. Thus, the agent may be unaware of the cost of some formula for herself and for other agents as well.
- The budget of each agent may also be different in different states, agents may be unaware of their own and others' budgets.

Language

Let $\mathbb{A} \mathbb{G}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a finite set of agents. We fix a set of terms

$$
\text { Terms }=\left\{c_{(A, i)} \mid A \in \mathcal{L}_{P L}, i \in \mathbb{A} \mathbb{G}\right\} \cup\left\{b_{i} \mid i \in \mathbb{A} \mathbb{G}\right\}
$$

Syntax

$$
\left.\varphi::=p \mid\left(z_{1} t_{1}+\cdots+z_{n} t_{n}\right) \geq z\right)|\neg \varphi|(\varphi \wedge \varphi)\left|K_{i} \varphi\right| C_{G} \varphi \mid\left[?_{G}^{A}\right] \varphi,
$$

where $p \in$ Prop, $t_{1}, \ldots, t_{n} \in$ Terms, $z_{1}, \ldots, z_{n}, z \in \mathbb{Z}^{a}, i \in \mathbb{A} \mathbb{G}, G \subseteq \mathbb{A} \mathbb{G}$, and $A \in \mathcal{L}_{P L}$.
${ }^{\text {a }}$ A formula of the form $t \geq \frac{1}{2}$ can be viewed as an abbreviation for $2 t \geq 1$, so we allow rational numbers to appear in our syntax.

We interpret the dynamic operator $\left[?_{G}^{A}\right] \varphi$ as "after a group query by G whether formula A is true, φ is true". Or, alternatively, "if G performs query A, they can achieve φ ".

What we can express

- $c_{i}(p \vee q) \geq 10$ for "the cost of the query whether (p or q) is true for agent i is at least 10",

What we can express

- $c_{i}(p \vee q) \geq 10$ for "the cost of the query whether (p or q) is true for agent i is at least 10",
- $b_{j} \geq 3$ for "the budget of agent j is at least 3 ",

What we can express

- $c_{i}(p \vee q) \geq 10$ for "the cost of the query whether (p or q) is true for agent i is at least 10 ",
- $b_{j} \geq 3$ for "the budget of agent j is at least 3 ",
- $2 b_{j}=b_{i}$ for " i 's budget is twice as big as that of j ",

What we can express

- $c_{i}(p \vee q) \geq 10$ for "the cost of the query whether (p or q) is true for agent i is at least 10 ",
- $b_{j} \geq 3$ for "the budget of agent j is at least 3 ",
- $2 b_{j}=b_{i}$ for " i 's budget is twice as big as that of j ",
- $K_{a}\left(b_{i}+b_{j}\right) \geq c_{i}(p \vee q)$ for "agent a knows that the joint budget of i and j is higher than the cost of $p \vee q$ for agent $i^{\prime \prime}$,

What we can express

- $c_{i}(p \vee q) \geq 10$ for "the cost of the query whether (p or q) is true for agent i is at least 10 ",
- $b_{j} \geq 3$ for "the budget of agent j is at least 3 ",
- $2 b_{j}=b_{i}$ for " i 's budget is twice as big as that of j ",
- $K_{a}\left(b_{i}+b_{j}\right) \geq c_{i}(p \vee q)$ for "agent a knows that the joint budget of i and j is higher than the cost of $p \vee q$ for agent i ",
- $\left[?_{G}^{(p \vee q)}\right] C_{H} \psi$ meaning that "after a joint query about $p \vee q$ by G it is common knowledge among H that $\psi^{\prime \prime}$.

Models

A model is a tuple $\mathcal{M}=\left(W,\left(\sim_{i}\right)_{i \in \mathbb{A} G}\right.$, Cost, Bdg, $\left.V\right)$, where

- W is a non-empty set of states,
- $\sim_{i} \subseteq(W \times W)$ is an equivalence relation for each $i \in \mathbb{A} \mathbb{G}$,
- Cost: $\mathbb{A} \mathbb{G} \times W \times \mathcal{L}_{P L} \longrightarrow \mathbb{Q}^{+} \cup\{0\}$ assigns the (non-negative) cost to propositional formulas for each agent in each state, s.t.
- $\operatorname{Cost}_{i}(w, T)=0$,
- $A \approx B \Rightarrow \operatorname{Cost}_{i}(w, A)=\operatorname{Cost}_{i}(w, B)$, where $A \approx B$ iff $A \equiv B$ or $A \equiv \neg B$.
- Bdg: $\mathbb{A} \mathbb{G} \times W \longrightarrow \mathbb{Q}^{+} \cup\{0\}$ is the (non-negative) bugdet of each agent at each state,
- V : Prop $\longrightarrow 2^{W}$ is a valuation of propositional variables.

Single-agent Case

Example

Alice needs test herself for COVID. It normally costs 20 resources and Alice has only 10. Luckily, she has a premium membership with 50% discount. But another agent Billy does not know about it (though he knows about the membership discount).

Updated Model

Given a model \mathcal{M}, an agent $i \in \mathbb{A} \mathbb{G}$ and a formula $A \in \mathcal{L}_{P L}$, an updated model \mathcal{M}^{\prime} is a tuple $\mathcal{M}^{\prime}=\left(W^{\prime},\left(\sim_{j}^{\prime}\right)_{j \in \mathbb{A} G}\right.$, Cost $\left.^{\prime}, \mathrm{Bdg}^{\prime}, V^{\prime}\right)$, where

- $W^{\prime}=\left\{w \in W \mid \mathcal{M}, w \vDash b_{i} \geq c_{i}(A)\right\}$;
- $\sim_{j}^{\prime}=\left(W^{\prime} \times W^{\prime}\right) \cap \sim_{j}^{*}$ with

$$
\sim_{j}^{*}= \begin{cases}\sim_{j} & \text { if } j \neq i \\ \sim_{j} \bigcap\left(\left([A]_{\mathcal{M}} \times[A]_{\mathcal{M}}\right) \cup\left([\neg A]_{\mathcal{M}} \times[\neg A]_{\mathcal{M}}\right)\right) & \text { if } j=i\end{cases}
$$

- $\operatorname{Cost}_{j}^{\prime}(w, B)=\operatorname{Cost}_{j}(w, B)$, for all $B \in \mathcal{L}_{P L}, j \in \mathbb{A} \mathbb{G}$;
- $\operatorname{Bdg}_{j}^{\prime}(w)= \begin{cases}\operatorname{Bdg}_{j}(w)-c_{i}(A), & \text { if } j=i, \\ \operatorname{Bdg}_{j}(w), & \text { if } j \neq i,\end{cases}$
- $V^{\prime}(p)=V(p) \cap W^{\prime}$ for all $p \in$ Prop.

From single agents to groups

Since the access to the information is non-symmetric (different costs for different agents), it may be rational for agents to cooperate and optimize the amount of resources they need to obtain certain information.

From single agents to groups

Since the access to the information is non-symmetric (different costs for different agents), it may be rational for agents to cooperate and optimize the amount of resources they need to obtain certain information.

Group queries are performed by the following procedure: identify $i \in G$ with the lowest cost of A, let each member of G transfer $\frac{\operatorname{Cost}_{i}(w, A)}{|G|}$ resources to i, then let i ask whether A is true and tell the answer to all agents in G.

Example

Telescope example

Three countries n, m and $/$ are seeking to know a certain fact p about the universe. If any of them build a very expensive telescope, it will give them a correct answer. Country n is the richest among others having 15 abstract resources $\left(b_{n}=15\right)$. But due to some reasons, e.g. higher labour costs, it requires the highest amount of resources $c_{n}(p)=30$ to build a telescope there. Country m has only 10 resources ($b_{m}=10$), but it can build a telescope for $c_{m}(p)=20$, for example due to better logistics. Country $/$ is the poorest country with only $b_{l}=5$ resources, while the cost of a telescope is the same as for n, so $c_{l}(p)=30$. Finally, we assume that the costs of the telescope are known to all agents, n and m know the budgets of each other as well as l's budget. But l is unaware of the exact budget of m : it considers both options $b_{m}=10$ and $b_{m}=9$ as possible ones.

Example

Formulas $b_{n}=15, b_{l}=5, c_{n}(p)=30, c_{m}(p)=20$ and $c_{l}(p)=30$ hold in all four states of \mathcal{M}.

Example

$$
\begin{aligned}
& p, b_{m}=10 \quad p, b_{m}=9 \quad p, b_{m}=0
\end{aligned}
$$

Formulas $b_{n}=15, b_{l}=5, c_{n}(p)=30, c_{m}(p)=20$ and $c_{l}(p)=30$ hold in all four states of \mathcal{M}.

After the update, formulas $b_{l}=5, c_{n}(p)=30, c_{m}(p)=20$ and $c_{l}(p)=30$ hold in both w_{1} and w_{2} as before. But $b_{n}=15$ no longer holds, since n 's budget is decreased after update: $b_{n}-\frac{c_{m}(p)}{|\{n, m\}|}=5$

Some Syntactic Sugar

Let's abbreviate "the Budget Constraint of agent $i \in G$ for the G 's query $A^{\prime \prime}$ as

$$
\mathbf{B C}_{i}(G, A) \equiv \frac{\min _{j \in G}\left(c_{j}(A)\right)}{|G|}
$$

Then, denote the fact that "the Budget Constraint for the query A for G is Satisfied" as

$$
\operatorname{BCS}(G, A) \equiv \bigwedge_{i \in G}\left(b_{i} \geq \mathbf{B C}_{i}(G, A)\right)
$$

If $\operatorname{BCS}(G, A)$ holds, we say that the query $\left[?_{G}^{A}\right]$ is realisable. Note that $\operatorname{BCS}(G, A)$ is in fact a formula of SPQ:

$$
\operatorname{BCS}(G, A) \equiv \bigvee_{j \in G}\left(\bigwedge_{i \in G}\left(c_{j}(A) \leq c_{i}(A) \wedge b_{i} \geq \frac{c_{j}(A)}{|G|}\right)\right)
$$

Updated Model

Given a model \mathcal{M}, a group $G \subseteq \mathbb{A} \mathbb{G}$ and a formula $A \in \mathcal{L}_{P L}$, an updated model \mathcal{M}^{\prime} is a tuple $\mathcal{M}^{\prime}=\left(W^{\prime},\left(\sim_{j}^{\prime}\right)_{j \in \mathbb{A} G}\right.$, Cost $\left.^{\prime}, \mathrm{Bdg}^{\prime}, V^{\prime}\right)$, where

- $W^{\prime}=\{w \in W \mid \mathcal{M}, w \vDash \operatorname{BCS}(G, A)\}$;
- $\sim_{j}^{\prime}=\left(W^{\prime} \times W^{\prime}\right) \cap \sim_{j}^{*}$ with

$$
\sim_{j}^{*}= \begin{cases}\sim_{j} & \text { if } j \notin G \\ \sim_{j} \bigcap\left(\left([A]_{\mathcal{M}} \times[A]_{\mathcal{M}}\right) \cup\left([\neg A]_{\mathcal{M}} \times[\neg A]_{\mathcal{M}}\right)\right) & \text { if } j \in G\end{cases}
$$

- $\operatorname{Cost}_{j}^{\prime}(w, B)=\operatorname{Cost}_{j}(w, B)$, for all $B \in \mathcal{L}_{P L}, j \in \mathbb{A} \mathbb{G}$;
- $\operatorname{Bdg}_{j}^{\prime}(w)= \begin{cases}\operatorname{Bdg}_{j}(w)-\frac{\min _{i \in G} \operatorname{Cost}_{i}(w, A)}{|G|}, & \text { if } j \in G, \\ \operatorname{Bdg}_{j}(w), & \text { if } j \notin G,\end{cases}$
- $V^{\prime}(p)=V(p) \cap W^{\prime}$ for all $p \in$ Prop.

Results

Theorem 1.
SPQ is complete.

Results

Theorem 1.

SPQ is complete.
Reduction-style axioms (except $C_{G} \varphi$):

$$
\left(r_{p}\right)\left[?_{G}^{A}\right] p \leftrightarrow(\operatorname{BCS}(G, A) \rightarrow p)
$$

$\left(r_{\geq}\right)\left[?{ }_{G}^{A}\right]\left(\sum_{i=1}^{k} a_{i} t_{i} \geq z\right) \leftrightarrow\left(\operatorname{BCS}(G, A) \rightarrow\left(\sum_{i=1}^{k} a_{i} t_{i} \geq z\right)^{(G, A)}\right)$
$\left(\mathrm{r}_{\neg}\right)\left[?_{G}^{A}\right] \neg \varphi \leftrightarrow \operatorname{BCS}(G, A) \rightarrow \neg\left[?_{G}^{A}\right] \varphi$
$\left(r_{\wedge}\right)\left[?_{G}^{A}\right](\varphi \wedge \psi) \leftrightarrow\left[?_{G}^{A}\right] \varphi \wedge\left[?_{G}^{A}\right] \psi$
$\left(r_{K 1}\right)\left[?_{G}^{A}\right] K_{j} \varphi \leftrightarrow \operatorname{BCS}(G, A) \rightarrow K_{j}\left[?_{G}^{A}\right] \varphi$, for $j \notin G$
$\left(\mathrm{r}_{K 2}\right)\left[?_{G}^{A}\right] K_{i} \varphi \leftrightarrow \operatorname{BCS}(G, A) \rightarrow \bigwedge_{A^{\prime} \in\{A, \neg A\}}\left(\left(A^{\prime} \rightarrow K_{i}\left(A^{\prime} \rightarrow\left[?_{G}^{A}\right] \varphi\right)\right)\right)$,
$i \in G$
(RC2) from $\chi \rightarrow\left[?_{G}^{A}\right] \psi$ and $(\chi \wedge \operatorname{BCS}(G, A)) \rightarrow$
$\rightarrow \bigwedge_{A^{\prime} \in\{A, \neg A\}}\left(A^{\prime} \rightarrow E_{H \cap G}\left(A^{\prime} \rightarrow \chi\right)\right) \wedge E_{H \backslash G} \chi$, infer $\chi \rightarrow\left[?{ }_{G}^{A}\right] C_{H} \psi$

Results

Theorem 2.

SAT problem for SPQ is decidable.
We have the FMP from the completeness proof, but due to Cost and Bdg functions there are infinitely many models of bounded size.

Results

Theorem 2.

SAT problem for SPQ is decidable.
We have the FMP from the completeness proof, but due to Cost and Bdg functions there are infinitely many models of bounded size. Solution: enumerate all 'pseudo-models' without Cost and Bdg and check if each 'pseudo-model' can be extended to a normal one by solving a system of linear inequalities. The latter problem is in P .

Results

Theorem 2.

SAT problem for SPQ is decidable.
We have the FMP from the completeness proof, but due to Cost and Bdg functions there are infinitely many models of bounded size. Solution: enumerate all 'pseudo-models' without Cost and Bdg and check if each 'pseudo-model' can be extended to a normal one by solving a system of linear inequalities. The latter problem is in P .

Theorem 3.
 Model checking SPQ is in P .

MC algorithm mimics the definitions of semantics.

Discussion

- One can add axioms like (A1) $\left(b_{i}=k\right) \rightarrow K_{i}\left(b_{i}=k\right)$ and (A2) $\left(c_{i}(A)=k\right) \rightarrow K_{i}\left(c_{i}(A)=k\right)$

Discussion

- One can add axioms like (A1) $\left(b_{i}=k\right) \rightarrow K_{i}\left(b_{i}=k\right)$ and (A2) $\left(c_{i}(A)=k\right) \rightarrow K_{i}\left(c_{i}(A)=k\right)$
- Costs can be represented as vectors $\left(r_{1}, \ldots, r_{k}\right)$, where each $r_{l} \in\left(r_{1}, \ldots, r_{k}\right)$ represents a specific resource

Discussion

- One can add axioms like (A1) $\left(b_{i}=k\right) \rightarrow K_{i}\left(b_{i}=k\right)$ and (A2) $\left(c_{i}(A)=k\right) \rightarrow K_{i}\left(c_{i}(A)=k\right)$
- Costs can be represented as vectors $\left(r_{1}, \ldots, r_{k}\right)$, where each $r_{l} \in\left(r_{1}, \ldots, r_{k}\right)$ represents a specific resource
- How much should composed formulas cost?

Discussion

- One can add axioms like (A1) $\left(b_{i}=k\right) \rightarrow K_{i}\left(b_{i}=k\right)$ and (A2) $\left(c_{i}(A)=k\right) \rightarrow K_{i}\left(c_{i}(A)=k\right)$
- Costs can be represented as vectors $\left(r_{1}, \ldots, r_{k}\right)$, where each $r_{l} \in\left(r_{1}, \ldots, r_{k}\right)$ represents a specific resource
- How much should composed formulas cost?
- Future work: Quantified queries

