We study **topic-based communication** between **agents** and its **strategic** version

(Arbitrary) Partial Communication

Rustam Galimullin and Fernando R. Velázquez-Quesada University of Bergen, Norway

1. Partial (Topic-Based) Communication

Let $M = \langle W, R, V \rangle$ be a *model* with $R_{\mathbf{G}} := \bigcap_{\mathbf{k} \in \mathbf{G}} R_{\mathbf{k}}$, $\sim_{\varphi}^{M} := (\llbracket \varphi \rrbracket^{M} \times \llbracket \varphi \rrbracket^{M}) \cup (\llbracket \neg \varphi \rrbracket^{M} \times \llbracket \neg \varphi \rrbracket^{M})$, $R^{\mathbf{S}: \chi!}_{\mathbf{i}} := R_{\mathbf{i}} \cap (R_{\mathbf{S}} \cup \sim_{\chi}^{M})$, and $M_{\mathbf{S}: \chi!} = \langle W, R^{\mathbf{S}: \chi!}, V \rangle$. The semantics of $\mathcal{L}_{\mathbf{S}: \chi!}$ is as follows:

 $\begin{array}{ll} (M,w) \Vdash \mathrm{D}_{\mathbf{G}} \, \varphi & \text{ iff } \quad \forall u \in W : R_{\mathbf{G}} w u \text{ implies } (M,u) \Vdash \varphi \\ (M,w) \Vdash [\mathbf{S} \colon \chi !] \, \varphi & \text{ iff } \quad (M_{\mathbf{S} \colon \chi !},w) \Vdash \varphi \end{array}$

Results. (1) Axiomatisation of $\mathcal{L}_{s:\chi!}$ is sound and complete via reduction axioms.

(2) Model Checking is in P.

(3) $\mathcal{L}_{s:\chi!}$ is as expressive as public announcement logic, but their update expressivities are incomparable.

2. Arbitrary Partial Communication

The language $\mathcal{L}^*_{S:\chi!}$ extends $\mathcal{L}_{S:\chi!}$ with a modality [S:*!].

 $(M,w) \Vdash [\mathbf{S};*!] \varphi \quad \text{iff} \quad \forall \chi \in \mathcal{L} : (M_{\mathbf{S};\,\chi!},w) \Vdash \varphi$

Results. (1) An infinitary axiomatisation of $\mathcal{L}_{s:\chi!}$ is sound and complete.

(2) Model Checking is PSPACE-complete.

(3) $\mathcal{L}_{S:\chi!}$ is incomparable to arbitrary public announcement logic.

Examples

Initial model M with highlighted $\sim^M_{p \rightarrow \neg q}$

Example 1: agents b and c communicate on topic $p \rightarrow \neg q$ with the resulting model $M_{\{\mathbf{b}, \mathbf{c}\}: p \rightarrow \neg q!}$:

