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ABSTRACT
Communication within groups of agents has been lately the focus

of research in dynamic epistemic logic (DEL). This paper studies

a recently introduced form of partial (more precisely, topic-based)
communication. This type of communication allows for modelling

scenarios of multi-agent collaboration and negotiation, and it is par-

ticularly well-suited for situations in which sharing all information

is not feasible/advisable. After presenting results on invariance and

complexity of model checking, the paper compares partial commu-

nication to public announcements, probably the most well-known

type of communication in DEL. It is shown that the settings are,

update-wise, incomparable: there are scenarios in which the effect

of a public announcement cannot be replicated by partial communic-

ation, and vice versa. Then, the paper shifts its attention to strategic
topic-based communication. It does so by extending the language

with a modality that quantifies over the topics the agents can ‘talk

about’. For this new framework, it provides a complete axiomatisa-

tion, showing also that the new language’s model checking problem

is PSPACE-complete. The paper closes showing that, in terms of

expressivity, this new language of arbitrary partial communication

is incomparable to that of arbitrary public announcements.

CCS CONCEPTS
• Theory of computation→Modal and temporal logics.

KEYWORDS
partial communication, arbitrary partial communication, distrib-
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epistemic logic

1 INTRODUCTION1

Epistemic logic (EL; [21]) is a powerful framework for representing2

the individual and collective knowledge/beliefs of a group of agents.3

When using relational ‘Kripke’ models, its crucial idea is the use4

of uncertainty for defining knowledge. Indeed, such structures as-5

sign to each agent a binary relation indicating indistinguishability6

among epistemic possibilities. Then, it is said that agent i knows7

that 𝜑 is the case (syntactically: Ki 𝜑) when 𝜑 holds in all situ-8

ations i considers possible. Despite its simplicity, EL has become9

a widespread tool, contributing to the formal study of complex10

multi-agent epistemic phenomena in philosophy [20], computer11

science [14], AI [26] and economics [12].12

One of the most appealing aspects of EL is that it can be used13

for reasoning about information change. This has been the main14

∗
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subject of dynamic epistemic logic (DEL; [30, 36]), a field whose15

main feature is that actions are semantically represented as op-16

erations that transform the underlying semantic model. Within17

DEL, one of the simplest meaningful epistemic actions is that of18

a public announcement: an external source providing the agents19

with truthful information in a fully public way [16, 27]. Yet, the20

agents do not need to wait for some external entity to feed them21

with facts: they can also share their individual information with22

one another. This is arguably a more suitable way of modelling23

information change in multi-agent (and, in particular, distributed)24

systems. Agents might occasionally receive information ‘from the25

outside’, but the most common form of interaction is the one in26

which they themselves engage in ‘conversations’ for sharing what27

they have come to know so far. It is this form of information ex-28

change that allows independent entities to engage in collaboration,29

negotiation and so on.30

Communication between agents can take several forms, and31

some of these variations have been explored within the DEL frame-32

work. A single agent might share all her information with every-33

body, as modelled in [8]. Alternatively, a group of agents might34

share all their information only among themselves, as represented35

by the action of “resolving distributed knowledge” studied in [3].36

One can even think about this form of communication not as a37

form of ‘sharing’, but rather as a form of ‘taking’ [10, 11], which38

allows the study of public and private forms of reading someone39

else’s information (e.g., hacking).40

All these approaches for inter-agent communication have a com-41

mon feature: when sharing, the agents share all their information.42

This is of course useful, as then one can reason about the best the43

agents can do together. But there are also scenarios (more common,44

one can argue) in which sharing all her available information might45

not be feasible or advisable for an agent. For the first, there might be46

constraints on the communication channels; for the second, agents47

might not be in a cooperative scenario, but rather in a competit-48

ive one. In such cases, one would be rather interested in studying49

forms of partial communication, through which agents share only50

‘part of what they know’. There might be different ways to make51

precise what each agent shares, but a natural one is to assume52

that the ‘conversation’ is relative to a subject/topic, defined by a53

given formula 𝜒 . Introduced in [38], this type of communication54

allows for a more realistic modelling of scenarios of multi-agent55

collaboration and negotiation. The first part of this paper studies56

computational aspects of this partial communication framework.57

It starts (Section 2) by recalling the main definitions and axiom58

system, providing then novel invariance and model checking res-59

ults. After that, it discusses (Section 3) the setting’s relationship60

with the public announcement framework, showing that although61



the languages are equally expressive, there are cases in which the62

operations cannot mimic each other.63

Still, in truly competitive scenarios, what matters the most is the64

decision of what to share. In other words, what matters is being65

able to reason about strategic topic-based communication. In order66

to do so, the second part of this paper introduces a framework for67

quantifying over the conversation’s topic. It presents (Section 4) the68

basic definitions, providing then results on invariance, axiom sys-69

tem, expressivity and the complexity of its model checking problem.70

After that, it compares this new setting with that of arbitrary public71

announcements, proving that the languages are, expressivity-wise,72

incomparable. Section 5 contrasts choices made with their altern-73

atives, and Section 6 summarises the paper’s contents, discussing74

also further research lines.75

2 BACKGROUND76

Throughout this text, let A be a finite non-empty group of agents,77

and let P be a non-empty enumerable set of atomic propositions.78

Definition 2.1 (Model). A multi-agent relational model (from now79

on, a model) is a tuple 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ where𝑊 (also denoted as80

𝔇(𝑀)) is a non-empty set of objects called possible worlds, 𝑅 =81

{𝑅i ⊆𝑊 ×𝑊 | i ∈ A} assigns a binary “indistinguishability” rela-82

tion on𝑊 to each agent in A (for G ⊆ A, define 𝑅G :=
⋂

k∈G 𝑅k), and83

𝑉 : P→ ℘(𝑊 ) is an atomic valuation (with𝑉 (𝑝) the set of worlds in84

𝑀 where 𝑝 ∈ P holds). A pair (𝑀,𝑤) with𝑀 amodel and𝑤 ∈ 𝔇(𝑀)85

is a pointed model, with𝑤 being the evaluation point. We call model86

𝑀 finite, if both𝑊 and

⋃
𝑤∈𝑊 {𝑝 ∈ P | 𝑤 ∈ 𝑉 (𝑝)} are finite. If87

model𝑀 is finite, then the size of𝑀 , denoted by |𝑀 |, is defined as88

card(𝑊 ) +∑i∈A card(𝑅i) +
∑

𝑤∈𝑊 card({𝑝 ∈ P | 𝑤 ∈ 𝑉 (𝑝)}).89

In a model, the agents’ indistinguishability relations are arbitrary.90

In particular, they need to be neither reflexive nor symmetric nor91

Euclidean nor transitive. Hence, “knowledge” here is neither truth-92

ful nor positively/negatively introspective. It rather corresponds93

simply to “what is true in all the agent’s epistemic alternatives”.Fer:
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Definition 2.2 (Relative expressivity). Let L1 and L2 be two lan-95

guages interpreted over pointed models. It is said that L2 is at least96

as expressive as L1 (notation: L1 ≼ L2) if and only if for every97

𝛼1 ∈ L1 there is 𝛼2 ∈ L2 such that 𝛼1 and 𝛼2 have the same truth-98

value in every pointed model. Write L1 ≈ L2 when L1 ≼ L2 and99

L2 ≼ L1; write L1 ≺ L2 when L1 ≼ L2 and L2 $ L1; write100

L1 ≍ L2 when L1 $ L2 and L2 $ L1.101

Note: to show L1 $ L2, it is enough to find two pointed models102

that agree in all formulas in L2 but can be distinguished by a103

formula in L1.104

2.1 Basic language105

Here is this paper’s basic language for describing pointed models.106

Definition 2.3 (Language L). Formulas 𝜑,𝜓 in L are given by107

𝜑,𝜓 ::= 𝑝 | ¬𝜑 | 𝜑 ∧𝜓 | DG 𝜑

for 𝑝 ∈ P and ∅ ⊂ G ⊆ A. Boolean constants and other Boolean108

operators are defined as usual. Define also Ki 𝜑 := D{i} 𝜑 . The size109

of 𝜑 , denoted |𝜑 |, is defined as follows: |𝑝 | = 1, |¬𝜑 | = |DG 𝜑 | =110

|𝜑 | + 1, and |𝜑 ∧𝜓 | = |𝜑 | + |𝜓 | + 1.111

Table 1: Axiom system L.

PR: ⊢ 𝜑 for 𝜑 a propositionally valid scheme

MP: If ⊢ 𝜑 and ⊢ 𝜑 → 𝜓 then ⊢ 𝜓

K
D
: ⊢ DG (𝜑 → 𝜓 ) → (DG 𝜑 → DG𝜓 ) G

D
: If ⊢ 𝜑 then ⊢ DG 𝜑

M
D
: ⊢ DG 𝜑 → DG′ 𝜑 for G ⊆ G′

The language L contains a modality DG for each non-empty112

group of agents G ⊆ A. Formulas of the form DG 𝜑 are read as “the113

agents in G know 𝜑 distributively”; thus, Ki 𝜑 is read as “i knows114

𝜑 distributively”, i.e., “agent i knows 𝜑”. The language’s semantic115

interpretation is as follows.116

Definition 2.4 (Semantic interpretation for L). Let (𝑀,𝑤) be a117

pointed model with 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩. The satisfiability relation ⊩118

between (𝑀,𝑤) and formulas in L is defined inductively. Boolean119

cases are as usual; for the rest,120

(𝑀,𝑤) ⊩ 𝑝 iffdef 𝑤 ∈ 𝑉 (𝑝),
(𝑀,𝑤) ⊩ DG 𝜑 iffdef for all 𝑢 ∈𝑊 , if 𝑅G𝑤𝑢 then (𝑀,𝑢) ⊩ 𝜑 .

121

Given a model𝑀 and a formula 𝜑 ,122

• the set ⟦𝜑⟧𝑀 := {𝑤 ∈ 𝔇(𝑀) | (𝑀,𝑤) ⊩ 𝜑} contains the worlds123

in𝔇(𝑀) in which 𝜑 holds (also called 𝜑-worlds);124

• the (note: equivalence) relation125

∼𝑀𝜑 := (⟦𝜑⟧𝑀 × ⟦𝜑⟧𝑀 ) ∪ (⟦¬𝜑⟧𝑀 × ⟦¬𝜑⟧𝑀 )
splits𝔇(𝑀) into (up to) two equivalence classes: one containing126

all 𝜑-worlds, and the other containing all ¬𝜑-worlds.127

A formula 𝜑 is valid (notation: ⊩ 𝜑) if and only if (𝑀,𝑤) ⊩ 𝜑 for128

every𝑤 ∈ 𝔇(𝑀) of every model𝑀 .129

Axiom system. The axiom system L (Table 1) characterises the130

formulas in L that are valid (see, e.g., [14, 18]). Boolean operators131

are taken care of by PR andMP. For the modality DG, while rule132

G
D
indicates that it ‘contains’ all validities, axiom K

D
indicates that133

it is closed under modus ponens, and axiom M
D
states that it is134

monotone on the group of agents (if 𝜑 is distributively known by G,135

then it is also distributively known by any larger group G′).136

Theorem 2.5. The axiom system L (Table 1) is sound and strongly137

complete for L.138

Structural equivalence. The following notion will be useful.139

Definition 2.6 (Collective Q-bisimulation [29]). Let Q ⊆ P be a set140

of atoms; let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ and 𝑀 ′ = ⟨𝑊 ′, 𝑅′,𝑉 ′⟩ be two models.141

A non-empty relation 𝑍 ⊆ 𝑊 ×𝑊 ′ is a collective Q-bisimulation142

between 𝑀 and 𝑀 ′ if and only if every (𝑢,𝑢 ′) ∈ 𝑍 satisfies the143

following.144

• Atoms. For every 𝑝 ∈ Q: 𝑢 ∈ 𝑉 (𝑝) if and only if 𝑢 ′ ∈ 𝑉 ′(𝑝).145

• Forth. For every G ⊆ A and every 𝑣 ∈𝑊 : if 𝑅G𝑢𝑣 then there is146

𝑣 ′ ∈𝑊 ′ such that 𝑅′G𝑢 ′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 .147

• Back. For every G ⊆ A and every 𝑣 ′ ∈𝑊 ′: if 𝑅′G𝑢 ′𝑣 ′ then there148

is 𝑣 ∈𝑊 such that 𝑅G𝑢𝑣 and (𝑣, 𝑣 ′) ∈ 𝑍 .149

Write 𝑀 ⇄Q
𝐶

𝑀 ′ iff there is a collective Q-bisimulation between150

𝑀 and𝑀 ′. Write (𝑀,𝑤) ⇄Q
𝐶
(𝑀 ′,𝑤 ′) iff a witness for𝑀 ⇄Q

𝐶
𝑀 ′151



contains the pair (𝑤,𝑤 ′). Remove the superindex “
Q
” when Q is the152

full set of atoms P. Note: the relation of collective Q-bisimilarity is153

an equivalence relation, both on models and pointed models.154

The language L is invariant under collective bisimilarity.155

Theorem 2.7 (⇄𝐶 implies L-eqivalence). Let (𝑀,𝑤) and156

(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄Q
𝐶
(𝑀 ′,𝑤 ′) then, for157

every𝜓 ∈ L containing only atoms from Q,158

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .159

Proof. Proofs showing that a form of structural equivalence160

implies invariance for a language usually proceed by structural161

induction on the language’s formulas.
1
For the case of collective162

P-bisimilarity and L, see [29]. □163

Model checking This problem for L is in P [14, Page 67].164

2.2 Partial (topic-based) communication165

Through an action of partial communication, a group of agents166

S ⊆ A share, with everybody, all their information about a given167

topic 𝜒 . To define it, consider first a simpler action. After agents in S168

share all their information with everybody, an agent i will consider169

a world𝑢 possible from a world𝑤 if and only if she and every agent170

in S considered 𝑢 possible from𝑤 (i.e., i’s new relation 𝑅S!i is the171

intersection of 𝑅i and 𝑅S). In other words, after full communication,172

at𝑤 agent i will consider 𝑢 possible if and only if neither her nor173

any agent in S could rule out 𝑢 from 𝑤 before the action. But if174

agents in S share only ‘their information about 𝜒 ’ (intuitively, only175

what has allowed them to distinguish between 𝜒- and ¬𝜒-worlds),176

edges between worlds agreeing in 𝜒 ’s truth-value are not ‘part of177

the discussion’; thus, they should not be eliminated.178

Definition 2.8 (Partial communication [38]). Let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩179

be a model; take a group of agents S ⊆ A and a formula 𝜒 . The180

model 𝑀S: 𝜒 ! = ⟨𝑊,𝑅S: 𝜒 !,𝑉 ⟩, the result of agents in S sharing all181

they know about 𝜒 with everybody, is such that182

𝑅S: 𝜒 !i := 𝑅i ∩ (𝑅S ∪ ∼𝑀𝜒 ).183

Thus, 𝑅S: 𝜒 !G =
⋂

i∈G 𝑅
S: 𝜒 !

i = 𝑅G ∩ (𝑅S ∪∼𝑀𝜒 ) = 𝑅G∪S ∪ (𝑅G ∩∼𝑀𝜒 ).184

Additionally, 𝑅∅: 𝜒 !i = 𝑅i.185

Definition 2.9 (Modality [S: 𝜒!] and language LS:𝜒 ! [38]). The186

language LS:𝜒 ! extends L with a modality [S: 𝜒!] for each S ⊆ A187

and each formula 𝜒 . More precisely, define first L0

S:𝜒 ! = L, and188

then defineL𝑖+1
S:𝜒 ! as the result of extendingL

𝑖
S:𝜒 ! with an additional189

modality [S: 𝜒!] for S ⊆ A and 𝜒 ∈ L𝑖
S:𝜒 !. The language LS:𝜒 ! is the190

union of all L𝑖
S:𝜒 ! with 𝑖 ∈ N. For its semantic interpretation,191

(𝑀,𝑤) ⊩ [S: 𝜒!] 𝜑 iffdef (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 .192

Defining ⟨S: 𝜒!⟩ 𝜑 := ¬ [S: 𝜒!] ¬𝜑 implies ⊩ ⟨S: 𝜒!⟩ 𝜑 ↔ [S: 𝜒!] 𝜑 .193

The size of formula 𝜑 ∈ LS:𝜒 ! is defined as in Definition 2.3 with194

an additional clause | [S: 𝜒!] 𝜑 | = |𝜒 | + |𝜑 | + 1.195

1
The proofs typically start by pulling out the universal quantifier over formulas, the

statement becoming “for every 𝜑 , any structurally equivalent pointed models agree on
𝜑 ’s truth-value”. This yields a stronger inductive hypothesis (IH) thanks to which the

proof can go through. This will be done throughout the rest of the text.

Table 2: Additional axioms and rules for LS:𝜒 !.

A𝑝

S:𝜒 !: ⊢ [S: 𝜒 !] 𝑝 ↔ 𝑝

A¬S:𝜒 !: ⊢ [S: 𝜒 !] ¬𝜑 ↔ ¬ [S: 𝜒 !] 𝜑

A∧S:𝜒 !: ⊢ [S: 𝜒 !] (𝜑 ∧𝜓 ) ↔ ( [S: 𝜒 !] 𝜑 ∧ [S: 𝜒 !]𝜓 )

AD

S:𝜒 !: ⊢ [S: 𝜒 !] DG 𝜑 ↔ (DS∪G [S: 𝜒 !] 𝜑 ∧ D𝜒

G [S: 𝜒 !] 𝜑)

RES:𝜒 !: If ⊢ 𝜑1 ↔ 𝜑2 then ⊢ [S: 𝜒 !] 𝜑1 ↔ [S: 𝜒 !] 𝜑2

Further motivation and details on the partial communication196

setting can be found in [38]. Still, here are two useful properties:197

⊩ [S: 𝜒1!] 𝜑 ↔ [S: 𝜒2!] 𝜑 for ⊩ 𝜒1 ↔ 𝜒2 (logically equivalent topics198

have the same effect) and ⊩ [S: 𝜒!] 𝜑 ↔ [S:¬𝜒!] 𝜑 (communication199

on a topic is just as communication on its negation).200

Axiom system. The axioms and rule of Table 2 form, together201

with those in Table 1, a sound and strongly complete axiom system202

for LS:𝜒 !. They rely on the DEL reduction axioms technique (for an203

explanation, see [39] or [36, Section 7.4]), with axiom AD

S:𝜒 ! being204

the crucial one. Using the abbreviation205

D
𝜒

G 𝜑 := (𝜒 → DG (𝜒 → 𝜑)) ∧ (¬𝜒 → DG (¬𝜒 → 𝜑))
(“agents in G know distributively that 𝜒 ’s truth value implies 𝜑” ),

the axiom indicates that a group G knows 𝜑 distributively after206

the action ([S: 𝜒!] DG 𝜑) if and only if the group S ∪ G knew, dis-207

tributively, that 𝜑 would hold after the action (DS∪G [S: 𝜒!] 𝜑) and208

the agents in G know distributively that 𝜒 ’s truth-value implies the209

action will make 𝜑 true (D
𝜒

G [S: 𝜒!] 𝜑).210

From Table 2 one can define a truth-preserving translation from211

LS:𝜒 ! to L, thanks to which the following theorem can be proved.212

Theorem 2.10 ([38]). The axiom system LS:𝜒 ! (L [Table 1]+Table 2)213

is sound and strongly complete for LS:𝜒 !.214

Structural equivalence. The modality [S: 𝜒!] is invariant under215

collective bisimilarity.216

Theorem 2.11 (⇄𝐶 impliesLS:𝜒 !-eqivalence). Let (𝑀,𝑤) and217

(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then, for218

every𝜓 ∈ LS:𝜒 !,219

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .220

Proof. The language LS:𝜒 ! is the union of L𝑖
S:𝜒 ! for all 𝑖 ∈221

N, so the proof proceeds by induction on 𝑖 . In fact, the text will222

prove a stronger statement: for every𝜓 ∈ LS:𝜒 ! and every𝑀 and223

𝑀 ′, if (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then (1) (𝑀,𝑤) ⊩ 𝜓 if and only if224

(𝑀 ′,𝑤 ′) ⊩ 𝜓 , and (2) (𝑀S:𝜓 !
,𝑤) ⇄𝐶 (𝑀 ′S:𝜓 !

,𝑤 ′). Details can be225

found in the appendix. □226

Expressivity. It is clear that L ≼ LS:𝜒 !, as every formula in the227

former is also in the latter. Moreover: the reduction axioms in228

Table 2 define a recursive translation tr : LS:𝜒 ! → L such that229

𝜑 ∈ LS:𝜒 ! implies ⊩ 𝜑 ↔ tr (𝜑) [38].2 This implies LS:𝜒 ! ≼ L and230

thus L ≈ LS:𝜒 !: the languages L and LS:𝜒 ! are equally expressive.231

2
Note: the translation’s complexity might be exponential, as it is for similar DELs (e.g.,
public announcement: [25]).



Model checking The original work on topic-based communica-232

tion [38] did not discuss computational complexity. Here we address233

that of the model checking problem for LS:𝜒 !.234

Given a finite pointed model (𝑀,𝑤) and a formula 𝜑 ∈ LS:𝜒 !,235

the model checking strategy is as follows. Start by creating the236

list sub(𝜑) of all subformulas of 𝜑 and all partial communication237

modalities [S: 𝜒!] in it. Next, similarly to the approach in [24], labelFer:
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238

each element of sub(𝜑) with the sequence of partial communication239

modalities inside the scope of which it appears. Finally, order the240

resulting labelled list in the following way: for 𝜓𝜎
1
,𝜓𝜏

2
∈ sub(𝜑)241

(with 𝜎 and 𝜏 the labellings) we have that 𝜓𝜎
1
precedes 𝜓𝜏

2
if and242

only if243

• 𝜓𝜎
1
and𝜓𝜏

2
are parts of modalities [S: 𝜒!], and 𝜎 < 𝜏 ,3 or else244

• 𝜓𝜎
1
appears within some [S: 𝜒!], and𝜓𝜏

2
does not, or else245

• 𝜓𝜎
1
is of the form [S: 𝜒!],𝜓𝜏

2
is not, and 𝜎 < 𝜏 , or else246

• neither𝜓𝜎
1
nor𝜓𝜏

2
are parts of some [S: 𝜒!], and 𝜏 < 𝜎 , or else247

• both𝜓𝜎
1
are𝜓𝜏

2
are of the form [S: 𝜒!], and 𝜎 < 𝜏 , or else248

• 𝜎 = 𝜏 , and𝜓𝜎
1
is a part of𝜓𝜏

2
, or else249

• 𝜓1 appears to the left of 𝜒 in 𝜑 .250

The intuition behind such an ordering is to allow a model check-251

ing algorithm to deal with 𝜒 ’s within [S: 𝜒!]’s before dealing with252

formulas within the scope of the modality. This way we ensure253

that, when we need to evaluate 𝜑 in [S: 𝜒!] 𝜑 , we already know254

the effect of [S: 𝜒!] on the model. As an example, consider 𝜑 :=255

[S1:𝑝 ∧ 𝑞!] [S2:𝑞!] DG 𝑝 . The resulting ordered list sub(𝜑) is 𝑝 , 𝑞,256

𝑝 ∧ 𝑞, [S1:𝑝 ∧ 𝑞!], 𝑞 [S1:𝑝∧𝑞!] , [S2:𝑞!] [S1:𝑝∧𝑞!] , 𝑝 [S1:𝑝∧𝑞!], [S2:𝑞!] ,257

DG 𝑝
[S1:𝑝∧𝑞!], [S2:𝑞!]

, [S2:𝑞!] DG 𝑝
[S1:𝑝∧𝑞!]

, 𝜑 .258

Observe that each subformula of 𝜑 is labelled with exactly one259

(maybe empty) sequence of partial communicationmodalities.Moreover,260

we label communication modality symbols separately. The number261

of subformulas of 𝜑 and modality symbols is bounded by O(|𝜑 |).262

Since each element of sub(𝜑) is labelled by only one sequence of263

modalities, we use at most polynomial number of them.264

Algorithm 1 An algorithm for global model checking for LS:𝜒 !265

1: procedure GlobalMC(𝑀,𝜑)266

2: for all𝜓𝜎 ∈ sub(𝜑) do267

3: for all 𝑤 ∈𝑊 do268

4: case𝜓𝜎 = DG 𝜒
𝜎269

5: check ← true270

6: for all (𝑤, 𝑣) ∈ 𝑅G do271

7: if (𝑤, 𝑣) is labelled with 𝜎 then272

8: if 𝑣 is not labelled with 𝜒𝜎 then273

9: check ← false274

10: break275276277278

11: if check then279

12: label 𝑤 with DG 𝜒
𝜎280281282

13: case𝜓𝜎 = [S: 𝜒 !]𝜎283

14: for all i ∈ A do284

15: for all (𝑣,𝑢) ∈ 𝑅i do285

16: if (𝑣,𝑢) is labelled with 𝜎 then286

17: if 𝑣 is labelled with 𝜒 iff 𝑢 is labelled with 𝜒 then287

18: label (𝑣,𝑢) with 𝜎, [S: 𝜒 !]288

19: else289

20: check ← true290

21: for all j ∈ S do291

22: if (𝑣,𝑢) ∉ 𝑅j then292

23: check ← false293

24: break294295296

25: if check then297

3
That is, 𝜎 is a proper prefix of 𝜏 .

26: label (𝑣,𝑢) with 𝜎, [S: 𝜒 !]298299300301302303304

27: case𝜓𝜎 = [S: 𝜒 !] 𝜉𝜎305

28: if 𝑤 is labelled with 𝜉𝜎,[S: 𝜒 !] then306

29: label 𝑤 with [S: 𝜒 !] 𝜉𝜎307308309310311312

The labelling Algorithm 1 is inspired by the algorithm for epi-313

stemic logic [19]. The crucial difference is that, besides labelling314

states, we also label transitions (case [S: 𝜒!]𝜎 ). This allows us to315

keep track of which relations ‘survive’ updates with partial com-316

munication modalities. The labelling of transitions is taken into317

account when dealing with the epistemic caseDG 𝜒
𝜎
: we check only318

transitions that have ‘survived’ at a current step of an algorithm319

run.320

Correctness of the algorithm can be shown by an induction on 𝜑 ,321

noting that cases of the algorithmmimic the definition of semantics.322

From a computational perspective, the preparation of sub(𝜑) can be323

done in O(|𝜑 |2) steps. The running time of GlobalMC is bounded324

by O(|𝜑 |2 · |𝑊 | · |A| · |𝑅 |) for the case of [S: 𝜒!]𝜎 .325

Theorem 2.12. The model checking problem for LS:𝜒 ! is in P.326

3 PARTIAL COMMUNICATION VS. PUBLIC327

ANNOUNCEMENTS328

The action for partial communication is, in a sense, similar to that329

for a public announcement: both are epistemic actions through330

which agents receive information about the truth-value of a specific331

formula. The difference is that, while in the latter the information332

comes from an external source, in the former the information comes333

from agents in the model. It makes sense to discuss the relationship334

between their formal representations.335

Under its standard definition [27], the public announcement of336

a formula 𝜉 transforms a model by eliminating all ¬𝜉-worlds. For337

a fair comparison with partial communication, here is an alternat-338

ive public announcement definition that rather removes all edges339

between worlds disagreeing on 𝜉 ’s truth-value [31].4340

Definition 3.1 (Public announcement). Let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ be a341

model; take a formula 𝜉 . The model𝑀𝜉 ! = ⟨𝑊,𝑅𝜉 !,𝑉 ⟩ is such that342

𝑅𝜉 !i := 𝑅i ∩ ∼𝑀𝜉 .343

Thus, 𝑅𝜉 !G = 𝑅G ∩ ∼𝑀𝜉 .344

The world-removing version and the edge-deleting alternative345

are collectively P-bisimilar (see Proposition A.1 in the appendix),346

and thus interchangeable from L’s perspective. Here is a modality347

for describing the operation’s effect.348

Definition 3.2 (Modality [𝜉!]). The language L𝜉 ! extends L with349

a modality [𝜉!] for 𝜉 a formula.
5
For their semantic interpretation,350

(𝑀,𝑤) ⊩ [𝜉!] 𝜑 iffdef (𝑀,𝑤) ⊩ 𝜉 implies (𝑀𝜉 !,𝑤) ⊩ 𝜑 .351

Defining ⟨𝜉!⟩ 𝜑 := ¬ [𝜉!] ¬𝜑 implies ⊩ ⟨𝜉!⟩ 𝜑 ↔ (𝜉 ∧ [𝜉!] 𝜑).352

4
Cf. [16], which removes only edges pointing to ¬𝜉-worlds. The option used here

has the advantage of behaving, with respect to the preservation of certain relational

properties (reflexivity, symmetry, transitivity), as the standard definition does.

5
More precisely, L1

𝜉 !
extends L0

𝜉 !
= L with an additional modality [𝜉 !] for 𝜉 ∈ L0

𝜉 !
.

Then, L2

𝜉 !
extends L1

𝜉 !
with an additional modality [𝜉 !] for 𝜒 ∈ L1

S:𝜒 ! , and so on.

The language L𝜉 ! is the union of all L𝑖
𝜉 !

with 𝑖 ∈ N.



It can be shown that L𝜉 ! is invariant under collective bisimil-353

arity (see Theorem A.1 in the appendix). An axiom system can be354

obtained by using the reduction axioms technique, with the crucial355

axiom being [𝜉!] DG 𝜑 ↔ (𝜉 → DG [𝜉!] 𝜑) [40]. As before, the356

existence of the reduction axioms implies L𝜉 ! ≼ L. This, together357

with the straightforward L ≼ L𝜉 !, implies L ≈ L𝜉 !: the languages358

L and L𝜉 ! are equally expressive.359

When comparing the partial communication and public announce-360

ments settings, a first natural question is about the languages’ re-361

lative expressivity. The answer is simple: LS:𝜒 ! and L𝜉 ! are both362

reducible to L, and thus they are equally expressive.363

At the semantic level, one might wonder whether the operations364

can ‘mimic’ each other. More precisely, one can ask the following.365

• Given 𝜉 ∈ L: are there S ⊆ A, 𝜒 ∈ L such that 𝑀𝜉 ! ⇄𝐶 𝑀S: 𝜒 !366

for every𝑀? (In symbols: ∀𝜉 . ∃S . ∃𝜒 .∀𝑀 . (𝑀𝜉 ! ⇄𝐶 𝑀S: 𝜒 !)?)367

• Given S ⊆ A, 𝜒 ∈ L: is there 𝜉 ∈ L such that 𝑀S: 𝜒 ! ⇄𝐶 𝑀𝜉 !368

for every𝑀? (In symbols: ∀S .∀𝜒 . ∃𝜉 .∀𝑀 . (𝑀S: 𝜒 ! ⇄𝐶 𝑀𝜉 !)?)369

Some known model-update operations have this relationship. For370

example, action models [9] generalise a standard public announce-371

ment: for every formula 𝜉 there is an action model that, when372

applied to any model, produces exactly the one that a public an-373

nouncement of 𝜉 does. For another example, edge-deleting versions374

of a public announcement (both that in [16] and that in Definition375

3.1) can be represented within the arrow update framework of [23].376

Here, the answer to the first question is straightforward: the377

agents might not have, even together, the information that a public378

announcement provides.379

Fact 3.3. Take A = {a} and P = {𝑝}; consider the (reflexive and380

symmetric) model𝑀 below on the left. A public announcement of 𝑝381

yields the model on the right.382

𝑝 a 𝑝!

⇒ 𝑝
383

Now, there is no S ⊆ A and 𝜒 ∈ L such that𝑀S: 𝜒 ! ⇄𝐶 𝑀𝑝!. The group384

S can be only ∅ or {a} and, in both cases, 𝑅S: 𝜒 !a = 𝑅a, regardless of385

the formula 𝜒 .386

Thus, ∀𝑀 .∀𝜉 . ∃S . ∃𝜒 . (𝑀𝜉 ! ⇄𝐶 𝑀S: 𝜒 !) fails: for the given387

model, the effect of a public announcement of 𝑝 cannot be replic-388

ated by any act of partial communication. This answers negatively389

the (stronger) first question above: there are no agents S and topic390

𝜒 that can replicate the given public announcement in every model.391

The answer to the second question is interesting: through partial392

communication, the agents can reach epistemic states that cannot393

be reached by a public announcement.394

Fact 3.4. Take A = {a, b} and P = {𝑝, 𝑞}; consider the (reflexive395

and symmetric) model𝑀 below on the left. A partial communication396

between all agents about 𝑝 ↔ 𝑞 (equivalence classes highlighted)397

yields the model on the right.398

𝑝

𝑝,𝑞

a, b

a

a {a,b}: (𝑝↔𝑞) !
⇒

𝑝

𝑝,𝑞

a, b a
399

Now, there is no 𝜉 ∈ L such that 𝑀𝜉 ! ⇄𝐶 𝑀{a,b}: (𝑝↔𝑞)!. For this,400

note that a public announcement preserves transitive indistinguishab-401

ility relations; yet, while𝑀 is transitive,𝑀{a,b}: (𝑝↔𝑞)! is not.402

Thus,∀𝑀 .∀S .∀𝜒 . ∃𝜉 . (𝑀S: 𝜒 ! ⇄𝐶 𝑀𝜉 !) fails: for the givenmodel,403

the effect of a ‘conversation’ among a and b on 𝑝 ↔ 𝑞 cannot be404

replicated by any public announcement. This answers negatively405

the (stronger) second question above: there is no 𝜒 that can replicate406

the given partial communication in every model.407

4 ARBITRARY PARTIAL COMMUNICATION408

The partial communication framework allows us to model inter-409

agent information exchange. Yet, consider competitive scenarios.410

While it is interesting to find out what a form of partial commu-411

nication can achieve (fix the agents and the topic, then find the412

consequences), one might be also interested in deciding whether413

a given goal can be achieved by some form of partial communic-414

ation (fix the goal: is there a group of agents and a topic that can415

achieve it?). This quantification over the sharing agents and the416

topic they discuss adds a strategic dimension to the framework.417

This is particularly useful when communication occurs over an418

insecure channel, as one would like to know whether some form of419

partial communication (who talks, and on which topic) can achieve420

a given goal (e.g., make something group or common knowledge421

while also precluding adversaries or eavesdroppers from learning422

it, as in [32]). Thus, in the spirit of [6], one can then quantify, either423

over the agents that communicate or over the topic they discuss.424

Quantifying over the communicating agents does not need ad-425

ditional machinery: A is finite, so a modality stating that “𝜑 is true426

after any group of agents share all their information about 𝜒” is427

definable as [∗: 𝜒!] 𝜑 :=
∧

S⊆A [S: 𝜒!] 𝜑 . Quantifying over the topic,428

though, requires additional tools.429

4.1 Language, semantics, and basic results430

Definition 4.1 (Modality [S: ∗!]). The language L∗S:𝜒 ! extends431

LS:𝜒 ! with a modality [S: ∗!] for each group of agents S ⊆ A. More432

precisely, take L∗,0S:𝜒 ! = L
∗
to be L plus the modality [S: ∗!]. Then,433

define L∗,𝑖+1S:𝜒 ! as the result of extending L∗,𝑖S:𝜒 ! with an additional434

modality [S: 𝜒!] for S ⊆ A and 𝜒 ∈ L∗,𝑖S:𝜒 !. The language L
∗
S:𝜒 ! is the435

union of all L∗,𝑖S:𝜒 ! with 𝑖 ∈ N. For the semantic interpretation,436

(𝑀,𝑤) ⊩ [S: ∗!] 𝜑 iffdef every 𝜒 ∈ L is s.t. (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑
(every 𝜒 ∈ L is s.t. (𝑀,𝑤) ⊩ [S: 𝜒!] 𝜑).437

If one defines ⟨S: ∗!⟩ 𝜑 := ¬ [S: ∗!] ¬𝜑 , then438

(𝑀,𝑤) ⊩ ⟨S: ∗!⟩ 𝜑 iffdef there is 𝜒 ∈ L s.t. (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 .439

The size of 𝜑 ∈ L∗S:𝜒 ! is defined as in Definition 2.9 with the follow-440

ing additional clause: | [S: ∗!] 𝜑 | = |𝜑 | + 1.441

Note: [S: ∗!] quantifies over formulas inL, and not over formulas442

in L∗S:𝜒 !. As in [6], this is to avoid circularity issues. One could have443

also chosen to quantify over formulas in LS:𝜒 !, but L ≈ LS:𝜒 !444

(Page 3) so nothing is lost by using L instead.
6

445

6
Still, for languages with other types of group knowledge, adding a dynamic modality

might increase the expressive power. For more on this (in the context of common

knowledge and quantified announcements), the reader is referred to [15].



Table 3: Axiom and rule of inference for the arbitrary case.

AS: ∗!: ⊢ [S: ∗!] 𝜑 → [S: 𝜒 !] 𝜑 for 𝜒 ∈ L

RS: ∗!: If ⊢ 𝜂 ( [S: 𝜒 !] 𝜑) for all 𝜒 ∈ L, then ⊢ 𝜂 ( [S: ∗!] 𝜑)

Axiom system. Axiomatising L∗S:𝜒 ! requires an additional notion.446

Definition 4.2 (Necessity Forms). Take 𝜑 ∈ L∗S:𝜒 !, 𝜒 ∈ L, S, G ⊆ A447

and ♯ ∉ 𝑃 . The set of necessity forms [17] is given by448

𝜂 (♯) ::= ♯ | 𝜑 → 𝜂 (♯) | DG 𝜂 (♯) | [S: 𝜒!] 𝜂 (♯)

The result of replacing ♯ with 𝜑 in a necessity form 𝜂 (♯) is denoted449

as 𝜂 (𝜑).450

The (note: infinitary) axiom system for L∗S:𝜒 ! is given by the451

axioms and rules on Tables 1, 2 and 3. The system is similar to452

well-known axiomatisations of other logics of quantified epistemic453

actions (see [34] for an overview). The soundness of A[S: ∗!] and454

R[S: ∗!] (Table 3) follows from [S: ∗!]’s semantic interpretation. Com-455

pleteness of the whole system can be shown by combining and456

adapting techniques from [40] (to deal with distributed knowledge)457

and [7] (to tackle quantifiers). The reader interested in details is458

referred to [1], where the authors presented a relatively similar459

completeness proof for a system with distributed knowledge and460

quantification over public announcements.461

Theorem 4.3. The axioms and rules on Tables 1, 2 and 3 are sound462

and (together) complete for L∗S:𝜒 !.463

Structural equivalence. The modality [S: ∗!] is also invariant464

under collective bisimilarity.465

Theorem 4.4 (⇄𝐶 implies L∗S:𝜒 !-eqivalence). Let (𝑀,𝑤) and466

(𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then, for467

every𝜓 ∈ L∗S:𝜒 !,468

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .469

Proof. As for Theorem 2.11 (see the appendix). □470

Expressivity. The modality [S: ∗!] adds expressive power.471

Theorem 4.5. L∗S:𝜒 ! is strictly more expressive than LS:𝜒 !.472

This result can be proven as the analogous result for APAL [6,473

Proposition 3.13]. Assume towards a contradiction that the lan-474

guages are equally expressive so, given a formula in L∗S:𝜒 !, there475

is an equivalent formula in LS:𝜒 !. Since both formulas are finite,476

there is an atom 𝑝 that appears in neither. However, [S: ∗!] in L∗S:𝜒 !477

quantifies over any formula, and thus over formulas including 𝑝 .478

With this, one can build two models that include worlds that satisfy479

𝑝 . Then, using induction, we can show that the formula in LS:𝜒 !480

(without 𝑝) cannot tell the models apart, while the formula in L∗S:𝜒 !481

(where quantification ranges also over formulas with 𝑝) can. This482

technique is used (with more details) in the proofs in Section 4.3.483

4.2 Model checking484

Here it is shown that the complexity of the model checking problem485

for L∗S:𝜒 ! is PSPACE-complete. This result is in line with PSPACE-486

completeness of many other logics of quantified information change487

as, e.g., arbitrary public announcements [6], group announcement488

logic [2], coalition announcement logic [4] and arbitrary arrow489

update logic [37]. However, there is an interesting twist in our al-490

gorithm. Model checking algorithms for the aforementioned logics491

include a step of computing a bisimulation contraction of a model,492

and then continue working on the contracted model. This is not493

possible in our case: a model and its collective bisimulation contrac-494

tion are not collectively bisimilar [28], so they might differ in some495

formulas’ truth-value. We still compute bisimulation contractions,496

but we use them just to inform our algorithm about bisimilar states.497

The computation continues on the original non-contracted model.498

Definition 4.6 (S-definable restrictions). Let (𝑀,𝑤) be a pointed499

model; take S ⊆ A. A model (𝑁,𝑤) is an S-definable restriction of500

(𝑀,𝑤) if and only if (𝑁,𝑤) = (𝑀S: 𝜒 !,𝑤) for some 𝜒 ∈ L∗S:𝜒 !.501

Fact 4.7. Let (𝑀,𝑤) be a finite pointed model. Then there is a502

finite number of S-definable restrictions of (𝑀,𝑤).503

The proof below presents an algorithmMC (𝑀,𝑤,𝜑) that returns504

true if and only if (𝑀,𝑤) ⊩ 𝜑 , and returns false if and only if505

(𝑀,𝑤) ⊮ 𝜑 . The main challenge is that modalities [S: ∗!] quantify506

over an infinite number of formulas. However, for any given finite507

model𝑀 , there is only a finite number of possible S-definable model508

restrictions. Showing that the problem is PSPACE-hard uses the509

classic reduction from the satisfiability of QBF.510

Theorem 4.8. The model checking for L∗S:𝜒 ! is PSPACE-complete.511

Proof. Let (𝑀,𝑤) be a pointed model, and 𝜑 ∈ L∗S:𝜒 !. In Al-512

gorithm 2, Boolean cases and the case for DG are as expected, and513

thus omitted.514

Algorithm 2 An algorithm for model checking for L∗S:𝜒 !515

1: procedureMC(𝑀,𝑤,𝜑)516

2: case 𝜑 = [S: 𝜒 !]𝜓517

3: return MC(𝑀S: 𝜒 !, 𝑤,𝜓 )518519

4: case 𝜑 = [S: ∗!]𝜓520

5: Compute collective P-bisimulation contraction ∥𝑀 ∥𝐶521

6: for all S-definable restrictions (𝑁, 𝑤) of (𝑀,𝑤) do522

7: if MC(𝑁, 𝑤,𝜓 ) returns false then523

8: return false524525526

9: return true527528529

The basic idea in the construction of S-definable restrictions is to530

consider a subset of all possible bipartitions of (𝑀,𝑤), taking care531

that bisimilar states end up in the same partition. This can be done532

by checking that for each state, if it is in a partition, then all states533

in the same collective bisimulation equivalence class are also in the534

same partition. Collective bisimulation equivalence classes can be535

computed by, e.g., a modification of Kanellakis-Smolka algorithm536

[22] that takes into account not only relations but also intersec-537

tions thereof. Having computed collective bisimulation equivalence538

classes of (𝑀,𝑤), one can construct an S-definable restriction of the539

model by taking a bipartition such that if 𝑣 belongs to one partition,540

then all 𝑢 ∈ [𝑣] also belong to the same partition, with [𝑣] being a541

collective bisimulation equivalence class.542



Constructing restrictions takes polynomial time and thus space.543

The space required for the case of [S: 𝜒!]𝜓 is bounded by O(|𝜑 | ·544

|𝑀 |). For the case of [S: ∗!]𝜓 , collective bisimulation contraction545

can be computed in polynomial time and space, and each restriction546

has a size of at most |𝑀 |. If one traverses a given formula depth-first547

and reuses memory, the space to store model restrictions is polyno-548

mial in |𝜑 | (even though the algorithm itself runs in exponential549

time). Thus, the space required for the case of [S: ∗!]𝜓 is bounded550

by O(|𝜑 | · |𝑀 |).551

Finally, since computing each subformula of 𝜑 requires space552

bounded by O(|𝜑 | · |𝑀 |), the space required by the whole algorithm553

is bounded by O(|𝜑 |2 · |𝑀 |). The algorithm follows closely the554

semantics of L∗S:𝜒 !, and correctness can be shown via induction555

on 𝜑 . For the case of quantifiers note that, in order to switch from556

bipartitions to particular formulas corresponding to those partitions,557

one can use characteristic formulas [35]. These formulas are built558

in such a way that they are true only in one state of a model (up to559

collective bisimularity).560

To show that the model checking problem is PSPACE-hard, use561

the classic reduction from the satisfiability of QBF. W. l. o. g., con-562

sider QBFs without free variables in which every variable is quanti-563

fied only once. Consider a QBF with 𝑛 variables {𝑥1, . . . , 𝑥𝑛}. We564

need a model and a formula in L∗S:𝜒 ! that are both of polynomial565

size of the QBF. The (reflexive and symmetric) model 𝑀𝑛
below566

satisfies this: 𝑤0 is the evaluation point, and for each variable 𝑥𝑖567

there are two states,𝑤1

𝑖
and𝑤0

𝑖
, corresponding respectively to eval-568

uating 𝑥𝑖 to 1 and to 0. Assume that each𝑤1

𝑖
satisfies only 𝑝𝑖 and569

each𝑤0

𝑖
satisfies only 𝑞𝑖 .570

𝑤0

𝑝1𝑤1

1

𝑞1𝑤0

1

. . . 𝑝𝑛𝑤1

𝑛
𝑞𝑛𝑤0

𝑛

a a . . . a

a

571

Let Ψ := 𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛Φ(𝑥1, . . . , 𝑥𝑛) be a quantified Boolean for-572

mula (so 𝑄𝑖 ∈ {∀, ∃} and Φ(𝑥1, . . . , 𝑥𝑛) is Boolean). The formula573

chosen𝑘 below indicates, intuitively, that the values (either 1 or 0)574

of the first 𝑘 variables have been chosen.575

chosen𝑘 :=
∧

1⩽𝑖⩽𝑘

(K̂a 𝑝𝑖 ↔ ¬ K̂a 𝑞𝑖 ) ∧
∧

𝑘<𝑖⩽𝑛

(K̂a 𝑝𝑖 ∧ K̂a 𝑞𝑖 ).

Here is, then, a recursive translation from a QBF Ψ to a formula𝜓576

in L∗S:𝜒 !:𝜓0 := Φ(K̂a 𝑝1, . . . , K̂a 𝑝𝑛),577

𝜓𝑘 :=

{
[{a, b} : ∗!] (chosen𝑘 → 𝜓𝑘−1) if 𝑄𝑘 = ∀
⟨{a, b} : ∗!⟩(chosen𝑘 ∧𝜓𝑘−1) if 𝑄𝑘 = ∃

,578

𝜓 := 𝜓𝑛 . We need to show that579

𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛Φ(𝑥1, . . . , 𝑥𝑛) is satisfiable if and only if580

(𝑀𝑛,𝑤0) ⊩ 𝜓 .581

For this, observe that each state in 𝑀𝑛
can be characterised by582

a unique formula. Moreover, relation b is the identity. Therefore,583

[{a, b} : ∗!] and ⟨{a, b} : ∗!⟩ can force any restriction of a-arrows584

from𝑤0 to𝑤𝑖 ’s. In themodel, states𝑤1

𝑖
and𝑤0

𝑖
correspond the truth-585

value of 𝑥𝑖 . The guard chosen𝑘 guarantees that only the truth-values586

of the first 𝑘 variables have been chosen, and that they have been587

chosen unambiguously (i.e. there is exactly one edge from 𝑤0 to588

either𝑤1

𝑖
and𝑤0

𝑖
). Thus, together with [{a, b} : ∗!] and ⟨{a, b} : ∗!⟩,589

the guards chosen𝑘 emulate ∀ and ∃. Then, once the values of all590

𝑥𝑖 ’s have been set, the evaluation of the QBF corresponds to the591

a-reachability of the corresponding states in𝑀𝑛
. □592

4.3 Arbitrary partial communication vs.593

arbitrary public announcements594

The languages LS:𝜒 ! and L𝜉 ! are equally expressive (both ‘reduce’595

to L). As it is shown below, this changes when quantification (over596

topics and announced formulas, respectively) is added.597

Definition 4.9. The language L∗
𝜉 !
extends L𝜉 ! with a modality598

[∗!] such that599

(𝑀,𝑤) ⊩ [∗!] 𝜑 iffdef for every 𝜒 ∈ L: (𝑀,𝑤) ⊩ [𝜒!] 𝜑 .7600

Define ⟨∗!⟩ 𝜑 := ¬ [∗!] ¬𝜑 , as usual.601

The theorem below shows that L∗
𝜉 !
and L∗S:𝜒 ! are incomparable602

w.r.t. expressive power (i.e., L∗S:𝜒 ! $ L
∗
𝜉 !
and L∗

𝜉 !
$ L∗S:𝜒 !). This603

result is obtained by adapting techniques and models from [6] and604

[37] to the case of partial communication.
8

605

Theorem 4.10. L∗
𝜉 !
and L∗S:𝜒 ! are, expressivity-wise, incompar-606

able.607

Proof. For L∗S:𝜒 ! $ L
∗
𝜉 !
, consider ⟨{a, b} : ∗!⟩(Kb 𝑝 ∧¬Kb Kb 𝑝)608

in L∗S:𝜒 !. For a contradiction, assume there is an equivalent 𝛼 ∈ L∗
𝜉 !
.609

Since 𝛼 is finite, there is an atom 𝑞 that does not occur in it. The610

strategy consists in building two P \ {𝑞}-bisimilar pointed models,611

then argue that they can be distinguished by ⟨{a, b} : ∗!⟩(Ka 𝑝 ∧612

¬Ka Ka 𝑝) but not by any 𝛼 . Consider the (reflexive and symmetric)613

models below.614

𝑀
𝑝𝑤 𝑢a

𝑝𝑤′
1

𝑝,𝑞𝑤′
2

𝑢′

a, b

a

a
𝑀 ′615

Note how (𝑀,𝑤) ⊮ ⟨{a, b} : ∗!⟩(Ka 𝑝 ∧ ¬Ka Ka 𝑝): making Ka 𝑝 ∧616

¬Ka Ka 𝑝 true at𝑤 requires removing the symmetric a-edge between617

𝑤 and 𝑢 (so Ka 𝑝 holds), but this makes 𝑢 inaccessible for a from𝑤618

(thus ¬Ka Ka 𝑝 fails). Yet, (𝑀 ′,𝑤 ′
1
) ⊩ ⟨{a, b} : ∗!⟩(Ka 𝑝∧¬Ka Ka 𝑝):619

a ‘conversation’ among {a, b} about 𝑝 ↔ 𝑞 produces the desired620

result (see Fact 3.4).621

To show that (𝑀,𝑤) and (𝑀 ′,𝑤 ′
1
) cannot be distinguished by622

a 𝑞-less formula 𝛼 in L∗
𝜉 !
, proceed by structural induction over 𝛼623

and submodels of𝑀 and𝑀 ′. Both models are collectively P \ {𝑞}-624

bisimilar (witness: {(𝑤,𝑤 ′
1
), (𝑤,𝑤 ′

2
), (𝑢,𝑢 ′)}), so the case for atoms625

is immediate. As an induction hypothesis, we state that the cur-626

rent submodels of 𝑀 and 𝑀 ′ are collectively P \ {𝑞}-bisimilar.627

Boolean, epistemic, and public announcement cases follow from628

Theorem 2.7. Finally, for [∗!] observe that for each announcement629

7
Thus, L∗

𝜉 !
extends the language from [6] with the distributed knowledge modality.

8
For space reasons, we do not present the whole argument here.



in one submodel we can always find a corresponding announce-630

ment in the other submodel such that the resulting updated models631

are collectively P \ {𝑞}-bisimilar. This is due to the fact that each632

state in both models is uniquely defined by a Boolean formula633

containing only atoms 𝑝 and 𝑞. Moreover, all possible updates of634

P \ {𝑞}-bisimilar submodels are given by the aforementioned wit-635

ness: {(𝑤,𝑤 ′
1
), (𝑤,𝑤 ′

2
), (𝑢,𝑢 ′)}. E.g. if a submodel of 𝑀 ′ contains636

only states 𝑤 ′
1
and 𝑤 ′

2
, then the corresponding submodel of 𝑀637

would contain only state𝑤 .638

To show L∗
𝜉 !
$ L∗S:𝜒 !, proceed in a similar fashion: consider639

⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝) in L∗𝜉 ! and assume there is an equivalent640

𝛽 ∈ L∗S:𝜒 !. Let 𝑞 be an atom not occurring in 𝛽 , and consider the641

(reflexive and symmetric) models below.642

𝑀

𝑝𝑤1

𝑝,𝑞𝑤2 𝑢

b, ca, b, c

b, c

𝑝𝑤′
1

𝑝,𝑞𝑤′
2

𝑞 𝑢′
1

𝑢′
2

b, c

a, b, c

b, c

𝑀 ′643

Note how (𝑀,𝑤1) ⊮ ⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝) (an announcement644

preserves transitivity). Yet, (𝑀 ′,𝑤 ′
1
) ⊩ ⟨∗!⟩(Kb 𝑝 ∧ ¬Kb Kb 𝑝): the645

announcement of 𝑞 → 𝑝 (equivalence classes highlighted) produces646

the desired result. To show that (𝑀,𝑤1) and (𝑀 ′,𝑤 ′
1
) cannot be647

distinguished by a 𝑞-less formula in L∗S:𝜒 !, proceed by structural in-648

duction. For ⟨S: ∗!⟩, observe that the pointed models are collectively649

P \ {𝑞}-bisimilar (witness: {(𝑤1,𝑤
′
1
), (𝑤2,𝑤

′
2
), (𝑢,𝑢 ′

1
), (𝑢,𝑢 ′

2
)}) and650

that, for each update in one model, there is an update in the other651

with the results remaining collectively P \ {𝑞}-bisimilar. As in the652

previous case, each state is uniquely characterised by a Boolean653

formula containing only atoms 𝑝 and 𝑞. This allows us to consider654

all possible bipartitions of the models. Moreover, the witness helps655

us to construct a corresponding model. E.g. if there is a relation656

between states𝑤 ′
1
and 𝑢 ′

1
, then we need to preserve the same rela-657

tion between𝑤1 and 𝑢. □658

5 DISCUSSION659

This paper studies further the partial communication framework660

of [38]. As such, it makes sense to argue, albeit briefly, for the use661

of this setting as well as that of its introduced extension.662

A first concern might be that, although communication between663

agents is a crucial form of interaction, the public announcement664

logic (PAL) framework has been already used for modelling it (e.g.,665

[2, 33]). Here we argue that this strategy might not be fully suited.666

A PAL announcement actually requires two parameters: the an-667

nouncement’s precondition and the information the agents receive.668

When this announcement is understood as information coming669

from an external source, it is clear what these two parameters are,670

and it is clear they are the same: in order to be ‘announced’, 𝜉 must671

be true, and after the announcement the agents learn that 𝜉 is the672

case.
9
But when this setting is used for communication between673

agents, precondition and information content are not straightfor-674

ward, and they might differ. When an agent i announces 𝜉 , what is675

the precondition? It cannot be only 𝜉 ; is it enough that the agent676

knows 𝜉 (i.e., Ki 𝜉), or should she be introspective about it (i.e.,677

9
More precisely, they learn 𝜉 was the case immediately before its announcement.

Ki Ki 𝜉)? Analogously, what is what the other agents learn? They678

learn not only that 𝜉 is true; do they learn that the agent knows 𝜉679

(i.e., Ki 𝜉), or even that she knows that she knows 𝜉 (i.e., Ki Ki 𝜉)?680

These questions naturally extend to situations of group commu-681

nication. In group announcement logic [2], an announcement from682

a group S is represented by the public announcement of

∧
i∈S Ki 𝜉i:683

each agent i ∈ S announces, in parallel with the others, a formula684

she knows. However, other readings may be more appropriate:685

the group might announce something that is common knowledge686

among its members, or even announce something they all know687

distributively. These alternative readings are more naturally rep-688

resented by the actions introduced in [3, 8, 10], of which partial689

communication is a novel variation.690

Then, in the partial communication setting, although only some691

of the agents share, this information is received by every agent692

in the system. One might be interested in more complex ‘private693

communication’ scenarios, as those in which only some agents694

receive the shared information (cf., e.g., [10]). Still, this ‘everybody695

hears’ setting is useful for modelling classroom or meeting-like696

scenarios in which everybody ‘hears’ but only some get to ‘talk’, or697

for situations in which the communication channel is insecure, and698

thus privacy cannot be assumed. Instead of looking at extensions699

for modelling private communication, this paper has rather focused700

on the strategic aspects that arise in competitive situations. In such701

cases, one wonders whether there is a form of partial communica-702

tion that can achieve a given goal (e.g., [32]). The arbitrary partial703

communication of Section 4 can help to answer such questions.704

6 SUMMARY AND FURTHERWORK705

The focus of this paper is the action of partial communication.706

Through it, a group of agents S share, with every agent in the model,707

all the information they have about the truth-value of a formula 𝜒 .708

Semantically, this is represented by an operation through which the709

uncertainty of each agent is reduced by removing the uncertainty710

about 𝜒 some agent in S has already ruled out. After having recalled711

the framework for partial communication [38], we showed that its712

languageLS:𝜒 ! is invariant under collective bisimulation. Moreover,713

we investigated the complexity of its model checking problem, and714

demonstrated that it remains in P as standard epistemic logic [19]. It715

has been also shown that, while the expressivity of LS:𝜒 ! is exactly716

that of the language for public announcements (both reducible to717

L), their ‘update expressive power’ are incomparable. The focus718

has then shifted to a modal operator that quantifies over the topic of719

the communication: a setting for arbitrary partial communication.720

We have provided the operator’s semantic interpretation as well as721

an axiom system and invariance results for the resulting language722

L∗S:𝜒 !. We have also proved that the model checking problem for723

the new language L∗S:𝜒 ! is PSPACE-complete, similar to DELs with724

action models [5, 13] and logics with quantification over inform-725

ation change [2, 4, 6, 37]. Finally, we demonstrated that L∗S:𝜒 ! is,726

expressivity-wise, incomparable to the language of arbitrary public727

announcements.728

The framework for partial communication provides, arguably, a729

natural representation of communication between agents. Indeed,730

it works directly with the information (i.e., uncertainty) the agents731

have, instead of looking for formulas that are known by the agents,732



and then using them as announcements (as done, e.g., when dealing733

with group announcements [2]). Additionally, the results show that734

this action is a truly novel epistemic action, different from others735

as public announcements.736

There is still further work to do. In the current version of the737

setting, some questions still need an answer. An important one738

is that collective bisimulation is not ‘well-behaved’: a model and739

its collective bisimulation contraction are not collectively bisim-740

ilar [28]. One then wonders whether there is a more adequate741

notion of structural equivalence for the basic language L and its742

extensions. Then, with the partial communication setting already743

compared with that for public announcements (in both their basic744

and their ‘arbitrary‘ versions), one would like to compare it also745

with the setting for group announcements [2], and even with those746

for more general edge-removing operations (e.g., the arrow update747

setting [23]). Finally, one can expand the presented framework.748

For example, one can extend the languages used here by adding a749

common knowledge operator, a step that requires technical further750

tools [3, 10, 15]. Equally interesting is a generalisation in which the751

topic of conversation is rather a set of formulas, together with its752

connection with other forms of communication (e.g., one in which753

some agents share all they know with everybody).754
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A APPENDIX864

Proof of Theorem 2.11865

SinceLS:𝜒 ! is the union ofL𝑖
S:𝜒 ! for all 𝑖 ∈ N, the proof will proceed866

by induction on 𝑖 . In fact, the manuscript will prove a stronger867

statement: for every𝜓 ∈ LS:𝜒 ! and every𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ and𝑀 ′ =868

⟨𝑊 ′, 𝑅′,𝑉 ′⟩, if (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then (1) (𝑀,𝑤) ⊩ 𝜓 if and869

only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 , and (2) (𝑀S:𝜓 !
,𝑤) ⇄𝐶 (𝑀 ′S:𝜓 !

,𝑤 ′).870

Base case. Take 𝜓 ∈ L0

S:𝜒 ! = L. In this case, Item (1) is noth-871

ing but Theorem 2.7. For Item (2), suppose (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′)872

and let 𝑍 be the witness; it will be shown that 𝑍 is also a collect-873

ive P-bisimulation between 𝑀S:𝜓 !
= ⟨𝑊,𝑅S:𝜓 !,𝑉 ⟩ and 𝑀 ′

S:𝜓 !
=874

⟨𝑊 ′, 𝑅′S:𝜓 !,𝑉 ′⟩. Take any (𝑢,𝑢 ′) ∈ 𝑍 .875

• Atoms. The operation does not change atomic valuations. Thus,876

since𝑍 satisfies atoms for𝑀 and𝑀 ′, it also satisfies it for𝑀S:𝜓 !
877

and𝑀 ′
S:𝜓 !

.878

• Forth. Take any G ⊆ A and any 𝑣 ∈ 𝑊 such that 𝑅S:𝜓 !

G𝑢𝑣 .879

Since 𝑅S:𝜓 !

G = 𝑅G∪S ∪ (𝑅G ∩ ∼𝑀𝜓 ) (Footnote 5), then 𝑅G∪S𝑢𝑣 or880

(𝑅G∩∼𝑀𝜓 )𝑢𝑣 . (i) If𝑅G∪S𝑢𝑣 then, since𝑍 satisfies forth for𝑀 and881

𝑀 ′, there is 𝑣 ′ ∈𝑊 ′ such that 𝑅′G∪S𝑢 ′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 . Since882

𝑅′S:𝜓 !

G = 𝑅′G∪S ∪ (𝑅′G ∩ ∼𝑀
′

𝜓
), the former implies 𝑅′S:𝜓 !

G𝑢
′𝑣 ′.883

Thus, there is 𝑣 ′ ∈ 𝑊 ′ such that 𝑅′S:𝜓 !

G𝑢
′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 ,884

as required. (ii) If (𝑅G ∩ ∼𝑀𝜓 )𝑢𝑣 , then both 𝑅G𝑢𝑣 and 𝑢 ∼𝑀
𝜓

𝑣 .885

From the first and the fact that 𝑍 satisfies forth for𝑀 and𝑀 ′,886

there is 𝑣 ′ ∈𝑊 ′ such that 𝑅′G𝑢 ′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 . Now,𝑢 ∼𝑀𝜓 𝑣887

indicates that𝑢 and 𝑣 agree on𝜓 ’s truth-value. But𝜓 ∈ L. Thus,888

Item (1) from this base case indicates that 𝑢 and 𝑢 ′ also agree889

on 𝜓 (from (𝑢,𝑢 ′) ∈ 𝑍 ), and so do 𝑣 and 𝑣 ′ (from (𝑣, 𝑣 ′) ∈ 𝑍 ).890

Hence, 𝑢 ′ and 𝑣 ′ agree on 𝜓 ’s truth-value, that is, 𝑢 ′ ∼𝑀′
𝜓

𝑣 ′.891

Therefore, (𝑅′G ∩ ∼𝑀
′

𝜓
)𝑢𝑣 , so 𝑅′S:𝜓 !

G𝑢
′𝑣 ′. This means there is892

𝑣 ′ ∈𝑊 ′ such that 𝑅′S:𝜓 !

G𝑢
′𝑣 ′ and (𝑣, 𝑣 ′) ∈ 𝑍 , as required.893

• Back. As in forth, using the fact that 𝑍 satisfies back for 𝑀894

and𝑀 ′.895

Thus,𝑀S:𝜓 !
⇄𝐶 𝑀 ′

S:𝜓 !
. But (𝑤,𝑤 ′) ∈ 𝑍 , so (𝑀S:𝜓 !

,𝑤)⇄𝐶 (𝑀 ′S:𝜓 !
,𝑤 ′).896

Inductive case. Take𝜓 ∈ L𝑛+1
S:𝜒 ! and suppose (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′).897

For Item (1), proceed by structural induction on 𝜓 . The cases for898

atoms, Boolean operators and DG are as in Theorem 2.7. The re-899

maining case is for formulas of the form [S: 𝜒!] 𝜑 with 𝜒 ∈ L𝑛
S:𝜒 !900

and 𝜑 ∈ L𝑛+1
S:𝜒 !. Here, the structural IH states that collectively P-901

bisimilar pointed models agree on the truth value of the subformula902

𝜑 . Note how, since 𝜒 ∈ L𝑛
S:𝜒 ! and (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′), Item (2) of903

the (global) IH implies (𝑀S: 𝜒 !,𝑤) ⇄𝐶 (𝑀 ′S: 𝜒 !,𝑤
′). Now, from left904

to right, suppose (𝑀,𝑤) ⊩ [S: 𝜒!] 𝜑 . By semantic interpretation,905

(𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 ; thus, from the structural IH, (𝑀 ′S: 𝜒 !,𝑤
′) ⊩ 𝜑 , i.e.,906

(𝑀 ′,𝑤 ′) ⊩ [S: 𝜒!] 𝜑 . The right-to-left direction is analogous.907

It is only left to prove Item (2) for𝜓 ∈ L𝑛+1
S:𝜒 !. This can be done908

as in the (global) base case, using Item (1) from this inductive case909

instead.910

Proposition A.1911

Let 𝑀 = ⟨𝑊,𝑅,𝑉 ⟩ be a model; let 𝜉 be a formula. Recall [27] that912

the world-removing public announcement of 𝜉 on 𝑀 yields the913

model𝑀 ′
𝜉 !
= ⟨⟦𝜉⟧𝑀 , {𝑅′i | i ∈ A},𝑉 ′⟩ with914

𝑅′i := 𝑅i ∩ (⟦𝜉⟧𝑀 × ⟦𝜉⟧𝑀 ) and 𝑉 ′(𝑝) := 𝑉 (𝑝) ∩ ⟦𝜉⟧𝑀 .

Now, take any𝑤 ∈ 𝔇(𝑀 ′
𝜉 !
). Then,915

(𝑀𝜉 !,𝑤) ⇄𝐶 (𝑀 ′𝜉 !,𝑤).916

Proof sketch. Intuitively, the difference betweenworld-removing917

and edge-deleting makes no difference for a collective bisimula-918

tion: in both cases, the ¬𝜉-partition becomes inaccessible from the919

𝜉-partition, where the world𝑤 lies. Formally, it is enough to prove920

that the relation921

𝑍 := {(𝑢,𝑢) ∈ (𝑊 × ⟦𝜉⟧𝑀 ) | 𝑢 ∈ ⟦𝜉⟧𝑀 }
is a collective P-bisimulation (between𝑀𝜉 ! and𝑀

′
𝜉 !
) containing the922

pair (𝑤,𝑤). □923

Theorem A.1924

Let (𝑀,𝑤) and (𝑀 ′,𝑤 ′) be two pointed models. If (𝑀,𝑤) ⇄𝐶925

(𝑀 ′,𝑤 ′) then, for every𝜓 ∈ L𝜉 !,926

(𝑀,𝑤) ⊩ 𝜓 if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 .927

Proof. Analogous to the proof of Theorem 2.11. □928

Proof of Theorem 4.4929

Since L∗S:𝜒 ! is the union of L∗,𝑖S:𝜒 ! for all 𝑖 ∈ N, proceed again by930

induction on 𝑖 (as in the proof of Theorem 2.11). Again, one proves931

a stronger statement: for every𝜓 ∈ L∗S:𝜒 ! and every𝑀 = ⟨𝑊,𝑅,𝑉 ⟩932

and𝑀 ′ = ⟨𝑊 ′, 𝑅′,𝑉 ′⟩, if (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) then (1) (𝑀,𝑤) ⊩ 𝜓933

if and only if (𝑀 ′,𝑤 ′) ⊩ 𝜓 , and (2) (𝑀S:𝜓 !
,𝑤) ⇄𝐶 (𝑀 ′S:𝜓 !

,𝑤 ′).934

Base case. This base case is for formulas in L∗,0S:𝜒 ! = L
∗
, defined935

as L plus the modality [S: ∗!]. For Item (1), proceed by structural936

induction, with the cases for formulas in L (atoms, Boolean op-937

erators and DG) as in Theorem 2.7. For the remaining case, sup-938

pose (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′). From left to right, if (𝑀,𝑤) ⊩ [S: ∗!] 𝜑939

then, by semantic interpretation, (𝑀S: 𝜒 !,𝑤) ⊩ 𝜑 holds for every940

𝜒 ∈ L. But from (𝑀,𝑤) ⇄𝐶 (𝑀 ′,𝑤 ′) and the fact each 𝜒 is in941

L, it follows that (𝑀S: 𝜒 !,𝑤) ⇄𝐶 (𝑀 ′S: 𝜒 !,𝑤
′) for every 𝜒 ∈ L942

(Item (2) in the base case of the proof of Theorem 2.11). Then, by943

IH, (𝑀 ′S: 𝜒 !,𝑤
′) ⊩ 𝜑 for every 𝜒 ∈ L. Hence, (𝑀 ′,𝑤 ′) ⊩ [S: ∗!] 𝜑 .944

The right-to-left direction is analogous.945

For Item (2), proceed as in the same case in the proof of Theorem946

2.11 , using now the just proved Item (1) for formulas in L∗.947

Inductive case. As in the same case in the proof of Theorem 2.11.948
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