Some properties of epistemic models expressible in group announcement logic are not expressible in coalition announcement logic

Groups versus Coalitions: On the Relative Expressivity of GAL and CAL

Tim French¹, Rustam Galimullin², Hans van Ditmarsch³, Natasha Alechina⁴

1. Preliminaries

Public announcement logic (PAL) [3] is used to reason about the effects of truthful public announcements on agents' knowledge. Group announcement logic (GAL) [1] and coalition announcement logic (CAL) [2] extend PAL with quantification over announcements. In our work, we show that there are some properties of models that are expressible in GAL and are not expressible in CAL.

Definition 1 (Epistemic Model) An epistemic model is a triple $M=(S,\sim,V)$, where

- ullet S is a non-empty set of states,
- $\sim_i \subseteq S^2$ is an equivalence relation to each agent i,
- $V: P \rightarrow 2^S$ is the valuation function.

A pair M_s with $s \in S$ is called a pointed model.

An announcement of α in a pointed model M_s results in an updated pointed model $M_s^{\|\alpha\|_M}$ containing only α -states:

- $\bullet S^{\|\alpha\|_M} = \|\alpha\|_M,$
- $\bullet \sim_i^{\|\alpha\|_M} = \sim_i \cap (\|\alpha\|_M \times \|\alpha\|_M),$
- $\bullet V^{\|\alpha\|_M}(p) = V(p) \cap \|\alpha\|_M.$

Definition 2 (Semantics) Let M_s be a pointed epistemic model. The semantics for boolean cases is as usual.

$$M_{S} \models K_{i}\phi \quad iff \ \forall t \in S : s \sim_{i} t \ implies \ M_{t} \models \phi$$

$$M_{S} \models [\alpha]\phi \quad iff \ M_{S} \not\models \alpha \ or \ M_{S}^{\|\alpha\|_{M}} \models \phi$$

$$M_{S} \models \langle \alpha \rangle \phi \quad iff \ M_{S} \models \phi \ and \ M_{S}^{\|\alpha\|_{M}} \models \phi$$

 $[\alpha]\phi$, $\langle \alpha \rangle \phi$: 'after public announcement of α , ϕ holds in the resulting model'.

2. Announcements by groups and coalitions

We are interested in the following restrictions on announcements:

- Announcements are made by agents
- Agents can only announce what they know
- Groups of agents can announce conjunctions of formulas, where each conjunct is a formula known by an agent in the group
- Coalitional ability wrt announcements: can a group make an announcement such that whatever agents outside the group announce, the goal formula holds?

Group Announcement Logic (GAL) = PAL + $\{ [G] \phi, \langle \langle G \rangle \rangle \phi \}$

 $\langle\!\langle G \rangle\!\rangle \phi$: 'there is an announcement by agents from G such that ϕ holds in the resulting model' $[\![G]\!] \phi$: 'whatever agents from G announce, ϕ holds in the resulting model'

Coalition Announcement Logic (CAL) = PAL + $\{ \langle G \rangle | \phi, \langle G \rangle \phi \}$

 $\langle\![G]\!\rangle\phi$: 'there is an announcement by agents from G such that whatever agents $A\setminus G$ outside of the coalition announce, ϕ holds'

 $[G]\varphi$: 'whatever agents from G announce, there is an announcement by the agents from the outside of the coalition, such that ϕ holds'

Let α_G be a shorthand for a formula of the type $K_i\phi_i \wedge \ldots \wedge K_j\phi_j$, where $i, \ldots, j \in G$, and ϕ_i, \ldots, ϕ_j are formulas of epistemic logic.

$$\begin{split} M_s &\models \llbracket G \rrbracket \phi \text{ iff } \forall \alpha_G : M_s \models [\alpha_G] \phi \\ M_s &\models \llbracket \langle G \rangle \rrbracket \phi \text{ iff } \forall \alpha_G \ \exists \beta_{A \backslash G} : M_s \models \alpha_G \to \langle \alpha_G \land \beta_{A \backslash G} \rangle \phi \\ M_s &\models \langle \langle G \rangle \rangle \phi \text{ iff } \exists \alpha_G : M_s \models \langle \alpha_G \rangle \phi \\ M_s &\models \langle G \rangle \phi \text{ iff } \exists \alpha_G \ \forall \beta_{A \backslash G} : M_s \models \alpha_G \land [\alpha_G \land \beta_{A \backslash G}] \phi \end{split}$$

3. Groups versus coalitions

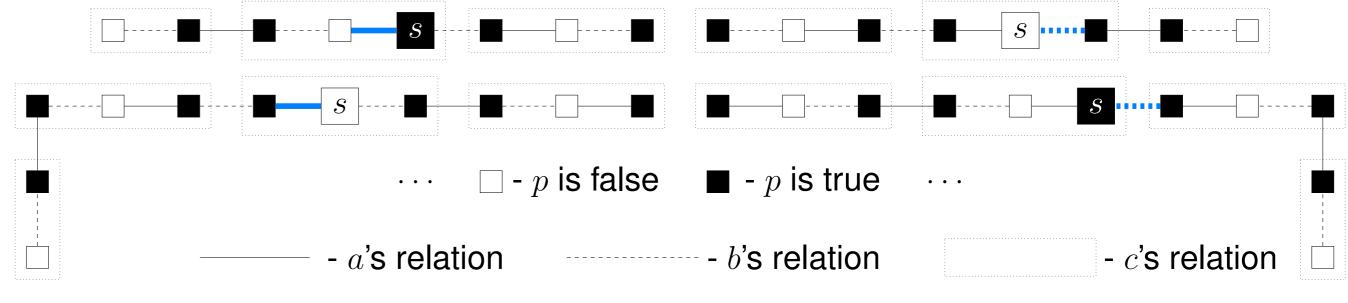
Definition 3 (Expressive power) Let \mathcal{L}_1 and \mathcal{L}_2 be two languages. \mathcal{L}_1 is at least as expressive as \mathcal{L}_2 ($\mathcal{L}_2 \leq \mathcal{L}_1$) iff for all $\phi \in \mathcal{L}_2$ there is a $\psi \in \mathcal{L}_1$ such that ϕ and ψ are satisfied in the same pointed models.

Theorem 1 $GAL \not\leq CAL$

One ingredient in the proof are *formula games*:

- A game is between the ∀-player and the ∃-player
- If either player cannot move, she loses
- Coalition announcements $[\!\langle G \rangle\!]\phi$ and $[\!\langle G \rangle\!]\phi$ are split into announcements by the coalition and announcements by the anti-coalition using half-coalition announcements $[\!\rangle A \setminus G, \psi_G \langle\!\rangle A \setminus G, \psi_G \rangle\!\rangle$

To show that a property ϕ is expressible in GAL but not CAL, we have to work with infinite classes of models (because both CAL and GAL include PAL, and in a given model a fixed PAL formula can be used for any announcement).



a-models and b-models

- ullet Two infinite classes of models \mathcal{M}_A and \mathcal{M}_B
- We define the property Φ of *being an* a-model expressible in GAL, i.e. for all $M_s \in \mathcal{M}_A$: $M_s \models \Phi$ and for all $N_t \in \mathcal{M}_B$: $N_t \not\models \Phi$
- Using formula games, we argue that for all $\Psi \in \mathcal{L}_{CAL}$, if for all $M_s \in \mathcal{M}_A$: $M_s \models \Psi$, then there is an $N_t \in \mathcal{M}_B$: $N_t \models \Psi$
- CAL operators require all agents to make a simultaneous announcement. For chain models, the intersection of all agents' relations is the identity, and hence if a coalition can force some configuration of an a-model, then it can replicate the same configuration in a b-model. GAL operators, however, do not require all agents to participate in an announcement, and relations of individual agents are not discerning enough to force isomorphic submodels of given a- and b-models.

References

- [1] Thomas Ågotnes, Philippe Balbiani, Hans van Ditmarsch, Pablo Seban. Group announcement logic. Journal of Applied Logic, 8(1), 2010, pages 62–81.
- [2] Thomas Ågotnes and Hans van Ditmarsch. Coalitions and Announcements. In *Proceedings of AAMAS 2008*, pages 673–680.
- [3] Jan Plaza. Logics of public communications. *Synthese* 158(2), 2007, pages 165–179.

